
Target Language Compiler
Reference Guide
Version 6

For Use with Simulink®

Real-Time Workshop®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Target Language Compiler Reference Guide
 COPYRIGHT 1997 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1997 First printing New for Target Language Compiler 1.0
September 2000 Online only Updated for Version 4 (Release 12)
April 2001 Online only Updated for Version 4.1 (Release 12.1)
July 2002 Online only Updated for Version 5.0 (Release 13)
June 2004 Online only Updated for Version 6.0 (Release 14)

Contents
1
Introducing the Target Language Compiler

What Is the Target Language Compiler? 1-2
Overview of the TLC Process . 1-3
Overview of the Code Generation Process 1-5

Target Language Compiler Capabilities 1-7
Customizing Output . 1-7
Inlining S-Functions . 1-7
Modifying and Diversifying Code Generation 1-8

Code Generation Process . 1-9
How TLC Determines S-Function Inlining Status 1-9
A Look at Inlined and Noninlined S-Function Code 1-10

Advantages of Inlining S-Functions 1-13
Motivations . 1-13
Inlining Process . 1-14
Search Algorithm for Locating Target Files 1-15
Availability for Inlining and Noninlining 1-15

New Features and Compatibility Issues in
Versions 4.0, 4.1, and 5.0 . 1-16

New Features Added in Version 5.0 . 1-16
New Features Added in Version 4.1 . 1-17
New Features Added in Version 4.0 . 1-18
Compatibility Issues . 1-19

Where to Go from Here . 1-23
Related Manuals . 1-23
i

ii Contents
2
Getting Started

Code Architecture . 2-2

model.rtw and Target Language Compiler Overview 2-4
The Target Language Compiler Process 2-4

Inlining S-Function Concepts . 2-6
Noninlined S-Function . 2-6
Types of Inlining . 2-7
Fully Inlined S-Function Example . 2-8
Wrapper Inlined S-Function Example 2-10

3
Code Generation Architecture

Build Process . 3-2
A Basic Example . 3-2

Invoking Code Generation . 3-8
The rtwgen Command . 3-8
The tlc Command . 3-8

Configuring TLC . 3-10
Setting Command Line Arguments . 3-10
Configuring for TLC Debugging . 3-12

Code Generation Concepts . 3-13
Output Streams . 3-13
Variable Types . 3-14
Records . 3-14
Record Aliases . 3-16

TLC Files . 3-18
Available Target Files . 3-18
Summary of Target File Usage . 3-22

System Target Files . 3-23
Block Target Files . 3-25
Block Target File Mapping . 3-25

Data Handling with TLC: An Example 3-26
Matrix Parameters in Real-Time Workshop 3-26

4
Contents of model.rtw

Model.rtw File Overview . 4-2
Using Scopes in the model.rtw File . 4-3
Object Information in the model.rtw File 4-6

Using Library Functions to Access model.rtw Contents . . 4-10
Caution Against Directly Accessing Record Fields 4-10
Exception to Using the Library Functions 4-11

5
Directives and Built-in Functions

Compiler Directives . 5-2
Syntax . 5-2
Comments . 5-17
Line Continuation . 5-18
Target Language Values . 5-19
Target Language Expressions . 5-21
Formatting . 5-27
Conditional Inclusion . 5-28
Multiple Inclusion . 5-29
Object-Oriented Facility for Generating Target Code 5-34
Output File Control . 5-36
Input File Control . 5-37
Asserts, Errors, Warnings, and Debug Messages 5-38
iii

iv Contents
Built-In Functions and Values . 5-39
TLC Reserved Constants . 5-51
Identifier Definition . 5-51
Variable Scoping . 5-56
Target Language Functions . 5-66

Command Line Arguments . 5-71
Filenames and Search Paths . 5-73

6
Debugging TLC Files

About the TLC Debugger . 6-2
Tips for Debugging TLC Code . 6-2

Using the TLC Debugger . 6-3
Invoking the Debugger . 6-3
TLC Debugger Command Summary . 6-5

TLC Coverage . 6-9
Using the TLC Coverage Option . 6-9

TLC Profiler . 6-13
Using the Profiler . 6-13

7
Inlining S-Functions

Introduction . 7-2

Writing Block Target Files to Inline S-Functions 7-3
Fully Inlined S-Functions . 7-3
Function-Based or Wrappered Code Generation 7-3

Inlining C MEX S-Functions . 7-5
S-Function Parameters . 7-6
A Complete Example . 7-7

Inlining M-File S-Functions . 7-18

Inlining Fortran (F-MEX) S-Functions 7-20

TLC Coding Conventions . 7-24

Block Target File Methods . 7-29
Block Target File Mapping . 7-29
Block Functions . 7-29

Loop Rolling . 7-37

Error Reporting . 7-40

8
TLC Function Library Reference

Obsolete Functions . 8-2

Target Language Compiler Functions 8-4
Common Function Arguments . 8-4

Input Signal Functions . 8-9

Output Signal Functions . 8-21

Parameter Functions . 8-26

Block State and Work Vector Functions 8-31

Block Path and Error Reporting Functions 8-35
v

vi Contents
Code Configuration Functions . 8-37

Sample Time Functions . 8-59

Other Useful Functions . 8-67

Advanced Functions . 8-78

A
TLC Error Handling

Generating Errors from TLC-Files . A-2
Usage Errors . A-2
Fatal (Internal) TLC Coding Errors . A-2
Formatting Error Messages . A-4

TLC Error Messages . A-5

TLC Function Library Error Messages A-30

B
Using TLC with Emacs

The Emacs Editor . B-2
Getting Started . B-2
Creating a TAGS File . B-2

Index

1

Introducing the Target
Language Compiler

What Is the Target Language
Compiler? (p. 1-2)

Overview of the role of the Target Language Compiler in
code generation

Target Language Compiler Capabilities
(p. 1-7)

Reasons and circumstances for customizing generated
code

Code Generation Process (p. 1-9) Block and system target files, exemplified by inlined
S-functions

Advantages of Inlining S-Functions
(p. 1-13)

When, how, and why to inline S-functions

New Features and Compatibility Issues
in Versions 4.0, 4.1, and 5.0 (p. 1-16)

What’s new and not-so-new in the Target Language
Compiler

Where to Go from Here (p. 1-23) Topics covered in this and related MATLAB® manuals

1 Introducing the Target Language Compiler

1-2
What Is the Target Language Compiler?
The Target Language Compiler is an integral part of the Real-Time
Workshop®. It enables you to customize the C code generated from any
Simulink® model and generate optimal, inlined code for your own Simulink
blocks. Through customization, you can produce platform-specific code, or you
can incorporate your own algorithmic changes for performance, code size, or
compatibility with existing methods that you prefer to maintain.

Note This book describes the Target Language Compiler, its files, and how to
use them together. This information is provided for those users who need to
customize target files in order to generate specialized output or to inline
S-functions in order to improve the performance and readability of the
generated code. (The overall code generation process for the Real-Time
Workshop is discussed in detail in “Code Generation and the Build Process” in
the Real-Time Workshop documentation.)

This book refers to the Target Language Compiler either by its complete
name, Target Language Compiler, or TLC.

What Is the Target Language Compiler?
Overview of the TLC Process
This top-level diagram shows how the Target Language Compiler fits in with
the Real-Time Workshop code generation process.

The Target Language Compiler (TLC) is designed for one purpose — to convert
the model description file, model.rtw, (or similar files) into target-specific code
or text.

As an integral component of Real-Time Workshop, the Target Language
Compiler transforms an intermediate form of a Simulink block diagram, called
model.rtw, into C code. The model.rtw file contains a “compiled”
representation of the model describing the execution semantics of the block

Run-time interface
support files

Simulink

Real-Time Workshop

Real-Time Workshop Build

model.rtw

Target
Language
Compiler

TLC program:

• System target file

• Block target files

• Inlined S-function
target files

• Target Language
Compiler function
library

model.c

model.mdl

model.exe

Make model.mk
1-3

1 Introducing the Target Language Compiler

1-4
diagram in a very high level language. The format of this file is described in
“Contents of model.rtw” on page 4-1.

The word target in Target Language Compiler refers not only to the high-level
language to be output, but to the nature of the real-time system on which the
code will be executed. TLC-generated code is thus able to respect and exploit
the capabilities and limitations of specific processor architectures (the target).

After reading the model.rtw file, the Target Language Compiler generates its
code based on target files, which specify particular code for each block, and
model-wide files, which specify the overall code style. The TLC works like a text
processor, using the target files and the model.rtw file to generate ANSI C
code.

In order to create a target-specific application, Real-Time Workshop also
requires a template makefile that specifies the appropriate C compiler and
compiler options for the build process. The template makefile is transformed
into a makefile (model.mk) by performing token expansion specific to a given
model. A target-specific version of the generic rt_main file (or grt_main) must
also be modified to conform to the target’s specific requirements such as
interrupt service routines. A complete description of the template makefiles
and rt_main is included in the Real-Time Workshop documentation.

Those familiar with HTML, Perl, and MATLAB® will find that the Target
Language Compiler borrows ideas from each of them. It has mark-up syntax
similar to HTML, along with the power and flexibility of Perl and other
scripting languages, plus the data handling power of MATLAB (TLC can
invoke MATLAB functions). The code generated by TLC is highly optimized
and fully commented C code, and can be generated from any Simulink model,
including linear, nonlinear, continuous, discrete, or hybrid. All Simulink blocks
are automatically converted to code, with the exception of MATLAB function
blocks and S-function blocks that invoke M-files. The Target Language
Compiler uses block target files to transform each block in the model.rtw file
and a model-wide target file for global customization of the code.

You can incorporate C MEX S-functions, along with the generated code, into
the program executable. You can also write a target file for your C MEX
S-function to inline the S-function (see “Inlining C MEX S-Functions” on
page 7-5), thus improving performance by eliminating function calls to the
S-function itself and the memory overhead of the S-function’s SimStruct.
Inlining an S-function incorporates the S-function block’s code into the
generated code for the model. When no TLC target file is present for the

What Is the Target Language Compiler?
S-function, its C code file is invoked via a function call. For more information
on inlining S-functions, see “Inlining S-Functions” on page 7-1. You can also
write target files for M-files or Fortran S-functions.

Overview of the Code Generation Process
Figure 1-1, The Target Language Compiler Process, on page 1-6 shows how the
Target Language Compiler works with its target files and Real-Time Workshop
output to produce code. When generating code from a Simulink model using
Real-Time Workshop, the first step in the automated process is to generate a
model.rtw file. The model.rtw file includes all of the model-specific
information required for generating code from the Simulink model. model.rtw
is passed to the Target Language Compiler, which uses it in combination with
a set of included system target files and block target files to generate the code.

Only the final executable file is written directly to the current directory. For all
other files created during code generation, including the model.rtw file, a build
directory is used. This directory is created by Real-Time Workshop right in the
current directory and is named .model_target_rtw, where target is the
abbreviation for the target environment, e.g., grt is the abbreviation for the
generic real-time target.

As of Release 13 (version 5), files placed in the build directory include

• The body for the generated C source code (model.c)

• Header files (model.h)

• Header file model_private.h defining parameters and data structures
private to the generated code.

• A makefile, model.mk, for building the application.

Note that in previous releases, generated source files were packaged as follows:

• The body for the generated C source code (model.c)

• Header files (model.h and model_export.h)

• A model registration include file (model_reg.h) that registers the model’s
SimStruct, sets up allocated data, and initializes nonfinite parameters

• A parameter include file (model_prm.h) that has information about all the
parameters contained in the model
1-5

1 Introducing the Target Language Compiler

1-6
.

Figure 1-1: The Target Language Compiler Process

Simulink Model (sample.mdl)

Real-Time Workshop

sample.rtw

Target Files

Target Language Compiler

*.tlc

(generated code files)
(generated code files)

(generated source code files)

in build directory ./sample_xxx_rtw/

(generated makefile)
)

Target Language Compiler Capabilities
Target Language Compiler Capabilities
If you simply need to produce ANSI C code from Simulink models, you do not
need to know how to prepare files for the Target Language Compiler. If you
need to customize the output of Real-Time Workshop, you will need to run the
Target Language Compiler. Use the Target Language Compiler if you need to

• Customize the set of options specified by your system target file

• Inline the code for S-Function blocks

• Generate additional or different types of files

Both the Embedded MATLAB Function Block and Real-Time Workshop
Embedded Coder facilitate code customization in a variety of ways. You may be
able to accomplish what you need with them, without the need to write TLC
files. However, you do need to prepare TLC files if you intend to inline
S-functions.

Customizing Output
To produce customized output using the Target Language Compiler, it helps if
you understand how blocks perform their functions, what datatypes are being
manipulated, the structure of the model.rtw file, and how to modify target files
to produce the desired output. “Directives and Built-in Functions” on page 5-1
describes the target language directives and their associated constructs. You
will use the Target Language Compiler directives and constructs to modify
existing target files or create new ones, depending on your needs. See “TLC
Files” on page 3-18 for more information about target files.

Inlining S-Functions
The Target Language Compiler provides a great deal of freedom for altering,
optimizing, and enhancing the generated code. One of the most important TLC
features is that it lets you inline S-functions that you may write to add your
own algorithms, device drivers, and custom blocks to a Simulink model.

To create an S-function, you write C code following a well-defined application
program interface (API). By default, the Target Language Compiler will
generate noninlined code for S-functions that invokes them using this same
API. This generalized interface incurs a fair amount of overhead due to the
presence of a large data structure called the SimStruct for each instance of
each S-Function block in your model. In addition, extra run-time overhead is
1-7

1 Introducing the Target Language Compiler

1-8
involved whenever methods (functions) within your S-function are called. You
can eliminate all this overhead by using the Target Language Compiler to
inline the S-function, by creating a TLC file named sfunction_name.tlc that
generates source code for the S-function as if it were a built-in block. Inlining
an S-function improves the efficiency and reduces memory usage of the
generated code.

Modifying and Diversifying Code Generation
In principle, you can use the Target Language Compiler to convert the
model.rtw file into any form of output (for example, OODBMS objects) by
replacing the supplied TLC files for each block it uses. Likewise, you can also
replace some or all of the shipping system-wide TLC files. The MathWorks
supports, but does not recommend, doing this. In order for you to maintain such
customizations, you may need to update your TLC files with each release of the
Real-Time Workshop. The MathWorks continues to improve code generation
by adding features and improving its efficiency, and possibly by altering the
contents of the model.rtw file. We try to make such changes backwards
compatible, but cannot guarantee that they all will be. However, inlined TLC
files that users prepare are generally backwards compatible, provided that
they invoke only documented TLC library and built-in functions.

Code Generation Process
Code Generation Process
Real-Time Workshop invokes the Target Language Compiler after a Simulink
model is compiled into an intermediate form (model.rtw) that is suitable for
generating code. To generate code appropriately, the Target Language
Compiler uses its library of functions to transform two classes of target files:

• System target files

• Block target files

System target files are used to specify the overall structure of the generated
code, tailoring for specific target environments. Block target files are used to
implement the functionality of Simulink blocks, including user-defined
S-function blocks.

You can create block target files for C MEX, Fortran, and M-file S-functions to
fully inline block functionality into the body of the generated code. C MEX
S-functions can be noninlined, wrapper-inlined, or fully inlined. Fortran
S-functions must be wrapper-inlined or fully inlined.

How TLC Determines S-Function Inlining Status
Whenever the Target Language Compiler encounters an entry for an
S-function block in the model.rtw file, it must decide whether to generate a call
to the S-function or to inline it.

Because they cannot use SimStructs, Fortran and M-file S-functions must be
inlined. This inlining can either be in the form of a full block target file or a
“one-liner” block target file that references a “substitute” C MEX S-function
source file.

A C MEX S-function will be selected for inlining by the Target Language
Compiler if there is an explicit mdlRTW() function in the S-function code or if
there is a target file for the current target language for the current block in the
TLC file search path. If a C MEX S-function has an explicit mdlRTW() function,
there must be a corresponding target file or an error condition will result.

The target file for an S-function must have the same root name as the
S-function and must have the extension .tlc. For example, the example C
MEX S-function source file sfun_bitop.c has its compiled form in
toolbox/simulink/blocks/sfun_bitop.dll (.mex* for UNIX) and its C target
file is located in toolbox/simulink/blocks/tlc_c/sfun_bitop.tlc.
1-9

1 Introducing the Target Language Compiler

1-1
A Look at Inlined and Noninlined S-Function Code
This example focuses on the example S-function sfun_bitop.c in directory
matlabroot/simulink/src/. The code generation options are set to allow reuse
of signal memory for signal lines that were not set as tunable signals.

The code generated for the bitwise operator block reuses a temporary variable
that is set up for the output of the sum block to save memory. This results in
one very efficient line of code, as seen here.

/* Bitwise Logic Block: <Root>/Bitwise Logical Operator */
/* [input] OR 'F00F' */
rtb_temp2 |= 0xF00F;

There is no initialization or setup code required for this inlined block.

If this block were noninlined, the source code for the S-function itself with all
its various options would be added to the generated code base, memory would
be allocated in the generated code for the block’s SimStruct data, and calls to
the S-function’s methods would be generated to initialize, run, and terminate
the S-function code. To execute the mdlOutputs function of the S-function, code
would be generated like this.
0

Code Generation Process
/* Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfun_bitop) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnOutputs(rts, tid);
 }

The entire mdlOutputs function is called and runs just as it does during
simulation. That’s not everything, though. There is also registration,
initialization, and termination code for the noninlined S-function. The
initialization and termination calls are similar to the fragment above. Then,
the registration code for an S-function with just one inport and one outport is
72 lines of C code generated as part of file model_reg.h.

/*Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfun_bitop) */
 {
 extern void untitled_sf(SimStruct *rts);
 SimStruct *rts = ssGetSFunction(rtS, 0);

 /* timing info */
 static time_T sfcnPeriod[1];
 static time_T sfcnOffset[1];
 static int_T sfcnTsMap[1];

 {
 int_T i;

 for(i = 0; i < 1; i++) {
 sfcnPeriod[i] = sfcnOffset[i] = 0.0;
 }
 }
 ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
 ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
 ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
 ssSetMdlInfoPtr(rts, ssGetMdlInfoPtr(rtS));

 /* inputs */
 {
 static struct _ssPortInputs inputPortInfo[1];

 _ssSetNumInputPorts(rts, 1);
 ssSetPortInfoForInputs(rts, &inputPortInfo[0]);

 /* port 0 */
 {

 static real_T const *sfcnUPtrs[1];
 sfcnUPtrs[0] = &rtU.In1;
 ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
 _ssSetInputPortNumDimensions(rts, 0, 1);
 ssSetInputPortWidth(rts, 0, 1);
 }
1-11

1 Introducing the Target Language Compiler

1-1
 }
.
.
.

This continues until all S-function sizes and methods are declared, allocated,
and initialized. The amount of registration code generated is essentially
proportional to the number and size of the input ports and output ports.

A noninlined S-function will typically have a significant impact on the size of
the generated code, whereas an inlined S-function can give handcoded size and
performance to the generated code.
2

Advantages of Inlining S-Functions
Advantages of Inlining S-Functions

Motivations
The goals of generated code usually include compactness and speed. On the
other hand, S-functions are run-time-loadable extension modules for adding
block-level functionality to Simulink. As such, the S-function interface is
optimized for flexibility in configuring and using blocks in a simulation
environment with capability to allow run-time changes to a block’s operation
via parameters. These changes typically take the form of algorithm selection
and numerical constants for the block algorithms.

While switching algorithms is a desirable feature in the design phase of a
system, when the time comes to generate code, this type of flexibility is often
dropped in favor of optimal calculation speed and code size. The Target
Language Compiler was designed to allow the generation of code that is
compact and fast by selectively generating only the code you need for one
instance of a block’s parameter set.

When Inlining Is Not Appropriate
You may decide that inlining is not appropriate for certain C MEX S-functions.
This may be the case if an S-function has

• Few or no numerical parameters

• One algorithm that is already fixed in capability (i.e., it has no optional
modes or alternate algorithms)

• Support for only one data type

• A significant or large code size in the mdlOutputs() function

• Multiple instances of this block in your models

Whenever you encounter this situation, the effort of inlining the block may not
improve execution speed and could actually increase the size of the generated
code. The trade-off is in the size of the block’s body code generated for each
instance vs. the size of the child SimStruct created for each instance of a
noninlined S-function in the generated code.

Alternatively, you can use a hybrid inlining method known as a C MEX
wrappered S-function, where the block target file is used to simply generate a
call to a custom code function that the S-function itself also calls. This approach
may be the optimal solution for code generation in the case of a large piece of
1-13

1 Introducing the Target Language Compiler

1-1
existing code. An adaptation of this hybrid technique is used for calling the
rt_*.c library functions located in directory rtw/c/libsrc/. See “Inlining
S-Functions” on page 7-1 for the procedure and an example of a wrappered
S-function.

Inlining Process
The strategy for achieving compact, high performance code from Simulink
blocks in Real-Time Workshop centers on determining what part of a block’s
operations are active and necessary in the generated code and what parts can
be predetermined or left out.

In practice, this means the TLC code in the block target file will select an
algorithm that is a subset of the algorithms contained in the S-function itself
and then selectively hard-code numerical parameters that are not to be
changed at run time. This reduces code memory size and results in code that is
often much faster than its S-function counterpart when mode selection is a
significant part of S-function processing. Additionally, all function call
overhead is eliminated for inlined S-functions as the code is generated directly
in the body of the code unless there is an explicit call to a library function in the
generated code.

The algorithm selections and parameter set for each block is output in the
initial phase of the code generation process from the S-function’s registered
parameter set or the mdlRTW() function (if present), which results in entries in
the model’s .rtw file for that block at code generation time. A file written in the
target language for the block is then called to read the entries in the model.rtw
file and compute the generated code for this instance of the block. This TLC
code is contained in the block target file.

One special case for inlined S-functions is for the case of I/O blocks and drivers
such as A/D converters or communications ports. For simulation, the I/O driver
is typically coded in the S-function as a pure source, a pass-through, or a pure
sink. In the generated code however, an actual interface to the I/O device must
be made, typically through direct coding with the common _in(), _out()
functions, inlined assembly code, or a specific set of I/O library calls unique to
the device and target environment.
4

Advantages of Inlining S-Functions
Search Algorithm for Locating Target Files
The Target Language Compiler has the following search path for block target
files:

1 The current directory

2 The directory where the S-function executable (MEX or .m) file is located

3 S-function directory’s subdirectory ./tlc_c (for C language targets)

The first target file encountered with the required name that implements the
proper language will be used in processing the S-function’s model.rtw file
entry.

Availability for Inlining and Noninlining
S-functions can be written in M, Fortran, and C. TLC inlining of S-functions is
available as indicated in this table.

Table 1-1: Inline TLC Support by S-Function Type

S-Function Type Noninlining Supported Inlining Supported

M-file No Yes

Fortran MEX No Yes

C Yes Yes
1-15

1 Introducing the Target Language Compiler

1-1
New Features and Compatibility Issues in
Versions 4.0, 4.1, and 5.0

New Features Added in Version 5.0
The following features have been added to the Target Language Compiler for
Version 5.0 (Release 13). In addition, Real-Time Workshop 5.0 contains many
fixes and enhancements that are potentially relevant to Target Language
Compiler users. See the Real-Time Workshop Release Notes documentation for
a complete description. The Target Language Compiler 5.0 updates are

• A C-like SPRINTF built-in formatting function has been added, which returns
a TLC string encoded with data from a variable number of arguments.

• BlockInstanceData function has been depreciated.

S-functions should no longer call the BlockInstanceData function. All data
used by a block should be declared using data type work vectors (DWORK).

• Unified code generation for Real-Time Workshop and Stateflow®

In earlier releases, code generated from Stateflow charts in a model was
written to source code files distinct from the source code files (such as
model.c, model.h, etc.) generated from the rest of the model. Now, by
default, Stateflow no longer generates any separate files from the Real-Time
Workshop. For example, all Stateflow initialization code is now inlined.

• A new directive, %filescope, can be used to limit the scopes of variables to
the files they are defined in. All variables defined after the appearance of
%filescope in a file will have this property, otherwise they will default to
global variables.

• Use of the :: operator to access global variables is now allowed in TLC files.
Variables defined on the command line and records read from model.rtw files
will remain global variables. Nested include files cannot access variables
local to the file which included them.

• The %assert directive (which tests the value of a Boolean expression and
issues an error message, prints a stack trace, and then exits if the result is
FALSE) is now easier to control.

You may enable/disable such %assert tests in several ways: via the -da
command line switch, by the %setcommandswitch directive within files, using
the set_param(model, 'TLCAssertion', 'on|off') command, or with a
6

New Features and Compatibility Issues in Versions 4.0, 4.1, and 5.0
check box control on the Real-Time Workshop GUI. By default, the check box
is empty (%assert directives are ignored).

• The EXISTS builtin will now be able to take a nonstring expression as an
argument. The old version of EXISTS will be deprecated (and will possibly
generate a warning). The new EXISTS variation will be much faster than the
old version.

• You may now request HTML reports when generating code for most targets
(all except the S-Function target and the Rapid Simulation target).

New Features Added in Version 4.1
The following features have been added to the Target Language Compiler for
Version 4.1 (Release 12.1):

• The TLC Debugger is now supported. See “Debugging TLC Files” on page 6-1

• ISINF, ISNAN, and ISFINITE now work for complex values.

• Added support for literal strings.

If a string constant is preceded by an L format specifier (as in L"string"),
Target Language Compiler performs no escape character processing on that
string. This is useful for specifying PC-style paths without using double
backslash characters.

The following examples are equivalent.
- L"d:\this\is\a\path"
- "d:\\this\\is\\a\\path"

• Zero indexing for complex values is now supported, as in
%assign a = 1.0 + 3.0i
%assign b = a[0] %% this didn't work before

• The following new functions have been added to the TLC function library:
- LibBlockInputSignalConnected
- LibBlockInputSignalLocalSampleTimeIndex
- LibBlockInputSignalOffsetTime
- LibBlockInputSignalSampleTime
- LibBlockInputSignalSampleTimeIndex
- LibBlockOutputSignalOffsetTime
- LibBlockOutputSignalSampleTime
- LibBlockOutputSignalSampleTimeIndex
1-17

1 Introducing the Target Language Compiler

1-1
- LibBlockMatrixParameterBaseAddr
- LibBlockParameterBaseAddr
- LibBlockNonSampledZC

See “Inlining S-Functions” on page 7-1 for information on these functions.

• The handling of signal connections in rtw/c/tlc/blkiolib.tlc was
reworked along with updating the help for LibBlockInputSignal. See “Input
Signal Functions” on page 8-9.

New Features Added in Version 4.0
The following features were added to the Target Language Compiler for
Version 4.0 (Release 12):

• Complete parsing of the TLC file just before execution. This aids
development because syntax errors are caught the first time the TLC file is
run instead of the first time the offending line is reached.

• TLC speed improvements across the board, particularly in block parameter
generation

• Creation and use of a build directory in the current directory to prevent
generated code from clashing with other files generated for other targets,
and for keeping your model directories maintenance to a minimum

• Entirely new TLC Profiler for finding performance problems in your TLC
code

• New format and changes to the model.rtw file.

• Aliases added for block parameters in the model.rtw file.

• New flexible methods for text expansion from within strings

• Column-major ordering of two-dimensional signal and parameter data

• FIELDNAMES, GENERATE_FORMATTED_VALUE, GETFIELD, ISALIAS, ISEMPTY,
ISEQUAL, ISFIELD, REMOVEFIELD, SETFIELD. Support for two-dimensional
signals in inlined code.

• INTMAX, INTMIN, TLC_TRUE, TLC_FALSE, UINTMAX

• Functions can return records.

• Formalization of records and record aliases

• Loop control variables are local to loop bodies.
8

New Features and Compatibility Issues in Versions 4.0, 4.1, and 5.0
• Improved EXISTS semantics; see “Built-In Functions and Values” on
page 5-39

• Can expand records with %<>

• Short circuiting of conditionals (||, &&, ?:, %if-%elseif-%else-%endif)

• Relational operators can be used with nonfinite values.

• Enhanced conversion rules for FEVAL. You can now pass records and structs
to FEVAL.

Compatibility Issues

Compatibility Issues in Version 5.0
In bringing Target Language Compiler files from Release 12.1 to Release 13,
the following changes may affect your TLC code base:

• The BlockInstanceData function, as mentioned above, has been deprecated.
Any TLC files that reference it should be updated.

• By default, GRT targets now use the rtModel data structure in place of the
root SimStruct.

Designed to reduce code size and improve readability, the rtModel is a
lightweight structure that is dynamically created when compiling a model,
containing only those fields required to execute that model. GRT now utilizes
the SimStruct only for noninlined child S-functions.

• Changes to the format of the model.rtw file may require you to update TLC
files that access model.rtw records, especially if they do so directly rather
than by calls to the TLC function library.

Compatibility Issues in Version 4.1
In bringing Target Language Compiler files from Release 12 to Release 12.1,
the following changes may affect your TLC code base:

• The formats and default values for several important record structures in the
model.rtw file have been changed. See “model.rtw Changes Between
Real-Time Workshop 5.0 and 4.1” on page A-12 for further information.

• During the initialization phase of code generation, the order in which the
Target Language Compiler calls each block’s BlockTypeSetup and
1-19

1 Introducing the Target Language Compiler

1-2
BlockInstanceSetup functions is different. In version 4.1, the
BlockTypeSetup function is called before the BlockInstanceSetup function.

• The code generation variables FunctionInlineType and
PragmaInlineString are now obsolete.

Compatibility Issues in Version 4.0
In bringing Target Language Compiler files from Release 11 to Release 12, the
following changes may affect your TLC code base:

• Nested evaluations are no longer supported. Expressions such as
%<LibBlockParameter(%<myVariable>,"", "", "")>

are no longer supported. You will have to convert these expressions into
equivalent nonnested expressions.

• Aliases are no longer automatically created for Parameter blocks while
reading in Real-Time Workshop files.

• You cannot change the contents of a “Default” record after it has been
created. In the previous TLC, you could change a “Default” record and see the
change in all the records that inherited from that default record.

• %codeblock and %endcodeblock constructs are no longer supported.

• %defines & macro constructs are no longer supported.

• Use of line continuation characters (... and \) are not allowed inside of
strings. Also, to place a double quote (") character inside a string, you must
use \". Previously, TLC allowed you to do """ to get a double quote in a
string.

• Semantics have been formalized to %include files in different contexts (e.g.,
from generated files inside of %with blocks, etc.) %include statements are
now treated as if the were read in from the global scope.

• The previous TLC had the ability to split function definitions (and other
directives) across include file boundaries (e.g., you could start a %function in
one file and %include a file that had the %endfunction). This no longer
works.
0

New Features and Compatibility Issues in Versions 4.0, 4.1, and 5.0
• Nested functions are no longer allowed. For example:
%function foo ()
%function bar ()
%endfunction

%endfunction

• Recursive records are no longer allowed. For example:
Record1 {
Val 2
Ref Record2

}
Record2 {
Val 3
Ref Record1

}

• Record declaration syntax has changed. The following code fragments
illustrate the differences between declaring a record recVar in previous
versions of the Target Language Compiler and the current release.

- Previous versions:
%assign recVarAlias = recVar { ...

field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

- Current version:
%createrecord recVar { ...

field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

See “Records” on page 3-14 for further information.
1-21

1 Introducing the Target Language Compiler

1-2
• Semantics of the EXISTS function have changed. In the previous release of
Target Language Compiler, EXISTS(var) would check if the variable
represented by the string value in var existed. In the current release of
Target Language Compiler, EXISTS(var) checks to see if var exists or not.

To emulate the behavior of EXISTS in the previous release, replace

EXISTS(var)

with

EXISTS(“%<var>”)
2

Where to Go from Here
Where to Go from Here
The remainder of this book contains both explanatory and reference material
for the Target Language Compiler:

• “Getting Started” on page 2-1 describes the process that the Target
Language Compiler uses to generate code, and general inlining S-function
concepts.

• “Code Generation Architecture” on page 3-1 describes the TLC files and the
build process. It also provides a tutorial on how to write target language files.

• “Contents of model.rtw” on page 4-1 describes the model.rtw file.

• “Directives and Built-in Functions” on page 5-1 contains the language
syntax for the Target Language Compiler.

• “Debugging TLC Files” on page 6-1explains how to use the TLC debugger.

• “Inlining S-Functions” on page 7-1 describes how to use the Target Language
Compiler and how to inline S-functions.

• “TLC Function Library Reference” on page 8-1 contains abstracts for the
TLC functions.

• “TLC Error Handling” on page A-1 lists the error messages that the Target
Language Compiler can generate, as well as how to best use the errors.

• “Using TLC with Emacs” on page B-1 is a reference for using Emacs to edit
TLC files.

Related Manuals
The items listed below are sections of other manuals that relate to the creation
of TLC files:

• The Real-Time Workshop documentation describes the use and internal
architecture of the Real-Time Workshop. The “Code Generation and the
Build Process” chapter presents information on how Target Language
Compiler fits into the overall code generation process. The “Targeting
Real-Time Systems” chapter offers further useful examples and
customization guidelines.

• The Real-Time Workshop Embedded Coder documentation presents details
on generating code for embedded targets. Among other topics, it covers data
structures and program execution, code generation, custom storage classes,
1-23

1 Introducing the Target Language Compiler

1-2
module packaging, and specifies system requirements and restrictions on
target files.

• The Simulink Writing S-Functions documentation presents detailed
information on all aspects of writing Fortran, M-file and C MEX S-functions.
The most pertinent chapter from the point of view of the Target Language
Compiler is “Guidelines for Writing C MEX S-Functions,” which details how
to write wrappered and fully inlined S-functions with a special emphasis on
the mdlRTW() function.
4

2

Getting Started

Code Architecture (p. 2-2) What information code for a block captures

model.rtw and Target Language
Compiler Overview (p. 2-4)

How the Target Language Compiler interprets model.rtw
files

Inlining S-Function Concepts (p. 2-6) Techniques used for inlining, with examples

2 Getting Started

2-2
Code Architecture
Before investigating the specific code generation pieces of the Target Language
Compiler (TLC), consider how Target Language Compiler generates code for a
simple model. From the figure below, you see that blocks place code into Mdl
routines. This shows MdlOutputs.

static void simple_output(int_T tid)
{

 /* Sin Block: '<Root>/Sine Wave' */

 simple_B.SineWave_d = simple_P.SineWave_Amp *
 sin(simple_P.SineWave_Freq * simple_M->Timing.t[0] +
 simple_P.SineWave_Phase) + simple_P.SineWave_Bias;

 /* Gain: '<Root>/Gain' */
 simple_B.Gain_d = simple_B.SineWave_d * simple_P.Gain_Gain;

 /* Outport: '<Root>/Out1' */
 simple_Y.Out1 = simple_B.Gain_d;
}

Blocks have inputs, outputs, parameters, states, plus other general properties.
For example, block inputs and outputs are generally written to a block I/O
structure (generated with identifiers of the type model_B), where model is the
model name). Block inputs can also come from the external input structure
(model_U) or the state structure when connected to a state port of an integrator
(model_X), or ground (rtGround) if unconnected or grounded. Block outputs can
also go to the external output structure (model_Y). The following diagram
shows the general block data mappings.

Code Architecture
This discussion should give you a general sense of what the “block” object looks
like. Now, you can look at the Target Language Compiler-specific pieces of the
code generation process.

Block

Block I/O
Struct,
model_B

External
Outputs
Struct,
model_Y

External
Inputs
Struct,
model_U

rtGround

States
Struct,
model_X

Work
Structs,
rtRWork,
rtIWork,
rtPWork,

Parameter
Struct,
model_P rtDWork,

...End

In
te

gr
at

io
nMdlDerivatives

MdlOutputs

MdlStart

Start Execution

MdlOutputs

MdlDerivatives

MdlTerminate

E
xe

cu
ti

on
 L

oo
p

MdlUpdate
2-3

2 Getting Started

2-4
model.rtw and Target Language Compiler Overview

The Target Language Compiler Process
To write TLC code for your S-function, you need to understand the Target
Language Compiler process for code generation. As previously described,
Simulink generates a model.rtw file that contains a high level representation
of the execution semantics of the block diagram. The model.rtw file is an ASCII
file that contains a data structure in the form of a nested set of TLC records.
The records are comprised of property name / property value pairs. The Target
Language Compiler reads the model.rtw file and converts it into an internal
representation.

Next, theTarget Language Compiler runs (interprets) the TLC files, starting
first with the system target file, e.g., grt.tlc. This is the entry point to all the
system TLC files as well as the block files, i.e., other TLC files get included into
or generated from the one TLC file passed to Target Language Compiler on its
command line (grt.tlc). As the TLC code in the system and block target files
is run, it uses, appends to, and modifies the existing property name/property
value pairs and records initially loaded from the model.rtw file.

model.rtw Structure
The structure of the model.rtw file mirrors the block diagram’s structure:

• For each nonvirtual system in the model, there is a corresponding system
record in the model.rtw file.

• For each nonvirtual block within a nonvirtual system, there is a block record
in the model.rtw file in the corresponding system.

model.rtw and Target Language Compiler Overview
The basic structure of model.rtw is

CompiledModel {
System {

Block {
DataInputPort {
...

}
DataOutputPort{
...

}
ParamSettings {
...

}
Parameter {
...

}
}

}
}

Operating Sequence
For each occurrence of a given block in the model, a corresponding block record
exists in the model.rtw file. The system target file TLC code loops through all
block records and calls the functions in the corresponding block target file for
that block type. For inlined S-functions, it calls the inlining TLC file.

There is a method for getting block specific information (internal block
information, as opposed to inputs/outputs/parameters/etc.) into the block
record in the model.rtw file for a block by using the mdlRTW function in the
C-MEX function of the block.

Among other things, the mdlRTW function allows you to write out parameter
settings (paramsettings), i.e., unique information pertaining to this block. For
parameter settings in the block TLC file, direct accesses to these fields are
made from the block TLC code and can be used to affect the generated code as
desired.
2-5

2 Getting Started

2-6
Inlining S-Function Concepts
To inline an S-function means to provide a TLC file for an S-Function block
that will replace the C (or Fortran or M) code version of the block that was used
during simulation.

Noninlined S-Function
If an inlining TLC file is not provided, most Real-Time Workshop targets will
still support the block by recompiling the C-MEX S-function for the block. As
discussed earlier, there is overhead in memory usage and speed when using the
C coded S-function and only a limited subset of mx* API calls are supported
within the Real-Time Workshop context. If you want the most efficient
generated code, you must inline S-functions by writing a TLC file for them.

When Simulink needs to execute one of the functions for an S-function block
during a simulation, it calls into the MEX-file for that function. When
Real-Time Workshop executes a noninlined S-function, it does so in a similar
manner as this diagram illustrates.

model.mdl

sfcn.c

my_alg.c

sfcn
u y

mdlOutputs()
{
*y = my_alg(u);
}

real_T my_alg(real_T u)
{
return(2.0*u);

}

s
f
c
n
.
d
l
l

Inlining S-Function Concepts
Types of Inlining
When inlining an S-function with a TLC file, it is helpful to define two
categories of inlining:

• Fully inlined S-functions

• Wrapper inlined S-functions

While both effectively inline the S-function and remove the overhead of a
noninlined S-function, the two approaches are different. The first example
below using timestwo.tlc is considered a fully inlined TLC file, where the full
implementation of the block is contained in the TLC file for the block.

The second example uses a wrapper TLC file. Instead of generating all the
algorithmic code in place, this example calls a C function that contains the body
of code. There are several potential benefits for using the wrapper TLC file:

• It provides a way of sharing the C code by both the C-MEX S-function and
the generated code. There is no need to write the code twice.

• The called C function is an optimized routine.

• Several of the blocks may exist in the model and it is more efficient in terms
of code size to have them call a function, as opposed to each creating identical
algorithmic code.

• It provides a way to incorporate legacy C code seamlessly into the Real-Time
Workshop generated code.

model.c

MdlOutputs()
{
model_B.y=sfcnOutputs(rtS,tid)
;

Call through a function
pointer to access
static mdlOutputs.
2-7

2 Getting Started

2-8
Fully Inlined S-Function Example
Inlining an S-function provides a mechanism to directly embed code for an
S-function block into the generated code for a model. Instead of calling into a
separate source file via function pointers and maintaining a separate data
structure (SimStruct) for it, the code appears “inlined” as the diagram below
shows.

The S-function timestwo.c provides a simple example of a fully inlined
S-function. This block multiplies its input by 2 and outputs it. The C-MEX
version of the block is in matlabroot/simulink/src/timestwo.c and the
inlining TLC file for the block is in
matlabroot/toolbox/simulink/blocks/tlc_c/timestwo.tlc.

model.c

MdlOutputs()
{
model_B.y=2.0*model_B.u;

}

TLC lets you customize
the generated code by
embedding my_alg.

sfcn.tlc

%function(block,system) Output
%<y>=2.0*%<u>;

%endfunction

Your TLC code specifies
the algorithm.

Inlining S-Function Concepts
timestwo.tlc
%implements "timestwo" "C"

%% Function: Outputs ==
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller",
rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll
%endfunction

TLC Block Analysis
The %implements line is required by all TLC blocks file and is used by the
Target Language Compiler to verify correct block type and correct language
support by the block. The %function directive starts a function declaration and
shows the name of the function, Outputs, and the arguments passed to it,
block and system. These are the relevant records from the model.rtw file for
this instance of the block.

The last piece to the prototype is Output. This means that any line that is not
a TLC directive is output by the function to the current file that is selected in
TLC. So, any nondirective lines in the Outputs function become generated code
for the block.

The most complicated piece of this TLC block example is the %roll directive.
TLC uses this directive to provide for the automatic generation of for loops
depending on input/output widths and whether the inputs are contiguous in
memory. This example uses the typical form of accessing outputs and inputs
from within the body of the roll, using LibBlockOutputSignal and
LibBlockInputSignal to access the outputs and inputs and perform the
multiplication and assignment. Note that this TLC file supports any signal
width.

The only function needed to implement this block is Outputs. For more
complicated blocks, other functions will be declared as well. You can find
examples of more complicated inlining TLC files in
2-9

2 Getting Started

2-1
matlabroot/toolbox/simulink/blocks and
matlabroot/toolbox/simulink/blocks/tlc_c, and by looking at the code for
built-in blocks in matlabroot/rtw/c/tlc/blocks.

The timestwo Model
This simple model uses the timestwo S-function and shows the MdlOutputs
function from the generated model.c file, which contains the inlined S-function
code.

Model Outputs Code
/* Model output function */
static void timestwo_ex_output(int_T tid)
{

 /* S-Function Block: <Root>/S-Function */
 /* Multiply input by two */
 timestwo_ex_B.timestwo_output = timestwo_ex_P.Constant_Value *
2.0;

 /* Outport: '<Root>/Out1' */
 timestwo_ex_Y.Out1 = timestwo_ex_B.timestwo_output;
}

Wrapper Inlined S-Function Example
The following diagram illustrates inlining an S-function as a wrapper. The
algorithm is directly called from the generated model code, removing the
S-function overhead but maintaining the user function.
0

Inlining S-Function Concepts
This is the inlining TLC file for a wrapper version of the timestwo block.

%implements "timestwo" "C"

%% Function: BlockTypeSetup ==================================
%%
%function BlockTypeSetup(block, system) void
 %% Add function prototype to models header file
 %<LibCacheFunctionPrototype...

("extern void mytimestwo(real_T* in, real_T* out,int_T
els);")>
 %% Add file that contains "myfile” to list of files to be
compiled
 %<LibAddToModelSources("myfile")>
%endfunction

model.c

MdlOutputs()
{
model_B.y=my_alg(model_B.u);
}

TLC lets you customize the
generated code to produce a
direct call to my_alg.

sfcn.tlc

%function(block,system) Output
%<y>=my_alg(%<u>);

%endfunction

Your TLC code specifies
how to directly call
my_alg.
2-11

2 Getting Started

2-1
%% Function: Outputs ==
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %assign outPtr = LibBlockOutputSignalAddr(0, "", "", 0)
 %assign inPtr = LibBlockInputSignalAddr(0, "", "",0)
 %assign numEls = LibBlockOutputSignalWidth(0)
 /* Multiply input by two */
 mytimestwo(%<inPtr>,%<outPtr>,%<numEls>);

%endfunction

Analysis
The function BlockTypeSetup is called once for each type of block in a model; it
doesn’t produce output directly like the Outputs function. Use BlockTypeSetup
to include a function prototype in the model.h file and to tell the build process
to compile an additional file, myfile.c.

Instead of performing the multiply directly, the Outputs function now calls the
function mytimestwo. So, all instances of this block in the model will call the
same function to perform the multiply. The resulting model function,
MdlOutputs, then becomes

static void timestwo_ex_output(int_T tid)
{
 /* S-Function Block: <Root>/S-Function */
 /* Multiply input by two */
 mytimestwo(&model_B.Constant_Value,&model_B.S_Function,1);

 /* Outport Block: <Root>/Out1 */
model_Y.Out1 = model_B.S_Function;
}

Summary
This section has been a brief introduction to the model.rtw file and the
concepts of inlining an S-function using the Target Language Compiler.
“Contents of model.rtw” on page 4-1 contains more details of the model.rtw file
and its contents. “Inlining S-Functions” on page 7-1 also contains details on
writing TLC files.
2

3

Code Generation
Architecture

Build Process (p. 3-2) How the Target Language Compiler processes compiled
model files to produce code

Invoking Code Generation (p. 3-8) Running rtwgen and tlc from the MATLAB command
line

Configuring TLC (p. 3-10) How to pass in configuration data to customize builds

Code Generation Concepts (p. 3-13) Understanding TLC variables and file and record
handling

TLC Files (p. 3-18) The roles and varieties of system and block target files

Data Handling with TLC: An Example
(p. 3-26)

One way TLC library functions can transform data into
data structures

3 Code Generation Architecture

3-2
Build Process
As part of the code generation process, Real-Time Workshop generates a
model.rtw file from the Simulink model. This file contains information about
the model that is then used to generate code. The code is generated through
calls to a utility called the Target Language Compiler. The Target Language
Compiler then converts these files into the desired language (e.g., C) and
enables the code generation.

This section presents an overview of the build process, focusing more on the
Target Language Compiler’s role in this process.

The Target Language Compiler is a separate binary program that is included
as a MEX-file. The Compiler compiles files written in the target language. The
target language is an interpreted language, and thus, the Compiler operates on
source files every time it executes. You can make changes to a target file and
watch the effects of your change the next time you build a model. You do not
need to recompile the Target Language Compiler binary or any other such
large binary to see the effects of your change.

Because the target language is an interpreted language, some statements may
never be compiled or executed (and hence not checked by the compiler for
correctness).

%if 1
Hello

%else
%<Invalid_function_call()>

%endif

In the above example, the Invalid_function_call statement will never be
executed. This example emphasizes that you should test all your the Target
Language Compiler code with test cases that exercise every line.

A Basic Example
This section presents a basic example of creating a target language file that
generates specific text from a Real-Time Workshop model. This example shows
the sequence of steps that you should follow in creating and using your own
target language files.

Build Process
Process
To begin, create the Simulink model shown below and save it as basic.mdl.

Simulink Model

1 Select Configuration Parameters from the Simulink Simulation menu.
This displays the Configuration Parameters dialog box

2 Select Fixed-step from the Solver pane of the Configuration Parameters
dialog box.

3 Select discrete (no continuous states) from the Solver menu.

4 Click Apply. The dialog appears as below:

Configuration Parameters Dialog Box
3-3

3 Code Generation Architecture

3-4
5 Click Real-Time Workshop in the Select column to bring up the top-level
Real-Time Workshop pane.

6 Click the Generate Code only button and then click Apply.

7 Click Debug in the Category column to activate the debug pane.

8 Select the Retain .rtw file option. This will let you inspect the contents of
the model.rtw file after the build finishes.

9 Again, click Real-Time Workshop in the Select column to bring up the
top-level Real-Time Workshop pane.

10 Click Generate code.

The build process then generates the code into the basic_grt_rtw directory
and you can see the progress in the MATLAB window.

The output eventually displays

Successful completion of Real-Time Workshop build procedure for model: basic

Viewing the model.rtw file basic.rtw
Open the file ./basic_grt_rtw/basic.rtw in a text editor to see what it looks
like. The hierarchy of records it contains includes among others, the following

Build Process
elements (where elided lines are denoted by “...”; comments are delimited by
< > and do not appear in the file).

CompiledModel {
<general model information, such as>
Name "basic"
 Version "6.0 (R14 Prerelease 2) 06-Apr-2004"
 ModelVersion "1.6"
 GeneratedOn "Tue Apr 13 09:50:20 2004"
 ExprFolding 1
 TargetStyle StandAloneTarget
 ModelReferenceTargetType "NONE"
 AllowNoArgFcnInReusedFcn 0
 PadderActive 0
 PrmModelName SLDataModelName(basic)
 TrigSSSplitOutUpd 1
 UniqueFromFiles []
 UniqueToFiles []

<Configuration set data starts here>
 ConfigSet {
 BlockReduction 0
 BooleanDataType 0
 BufferReuse 1

...
}
<Solver settings>

 Solver FixedStepDiscrete
 SolverType FixedStep
 StartTime 0.0
 StopTime 10.0
 LoadInitialState no
...

}
<Global model settings>
 NumModelInputs 0
 NumModelOutputs 1
 NumNonVirtBlocksInModel 3
 DirectFeedthrough no
 NumContStates 0
...

<Information specifying datatypes>
DataTypes {
 NumDataTypes 14
 NumSLBuiltInDataTypes 9
 StrictBooleanCheckEnabled 0
 DataType {
 DTName double
 Id 0
 Size 8

...
}

3-5

3 Code Generation Architecture

3-6
}
<External input specifications>
 ExternalInputs {
 ExternalInputDefaults {
 RecordType ExternalInput
 Width 1
 MemoryMapIdx [-1,-1,-1]
 HasObject 0
 DataTypeIdx 0
 ComplexSignal no

...
}

}
...
<External ouytputs specifications>
ExternalOutputs {
 ExternalOutputDefaults {
 RecordType ExternalOutput
 Width 1
 MemoryMapIdx [-1,-1,-1]
 SigLabel ""
 HasObject 0
 Padding 0
 }
 NumExternalOutputs 1
 ExternalOutput {
 Block [0, 2]
 }
 }
 BlockOutputs {
 GlobalBlockOutputDefaults {
 RecordType BlockOutput
 SigSrc []
 GrSrc [-1, -1]

...
}

}
<Additional parameter records>
...
<Model checksum information>
 BlockParamChecksum Vector(4)
["1908524175U", "3510113275U", "2403630620U", "441379036U"]
 ModelChecksum Vector(4)
["2002754078U", "852865024U", "2143565807U", "1314203038U"]
}

Creating the Target File
Next, create a basic.tlc file to act as a target file for this model. However,
instead of generating code, simply print out some information about the model
using this file. The concept is the same as used in code generation.

Build Process
Create a file called basic.tlc in ./ (the directory containing basic.mdl). This
file should contain the following lines:

%with CompiledModel

My model is called %<Name>.
It was generated on %<GeneratedOn>.

It has %<NumModelOutputs> output(s) and %<NumContStates> continuous states.

%endwith

For the build process, you need to include some further information in the TLC
file for the build process to successfully proceed. Instead, in this example, you
will generate the .rtw file directly and then run the Target Language Compiler
on this file to generate the desired output. To do this, enter at the MATLAB
prompt

rtwgen('basic', 'OutputDirectory', 'basic_grt_rtw')
tlc -r basic_grt_rtw/basic.rtw basic.tlc -v

The first line generates the .rtw file in the build directory 'basic_grt_rtw',
(this step is actually unnecessary since the file has already been generated in
the previous step; however, it will be useful if the model is changed and the
operation has to be repeated).

The second line runs the Target Language Compiler on the file basic.tlc. The
-r option tells the Target Language Compiler that it should use the file
basic.rtw as the .rtw file. Note that a space must separate -r and the input
filename. The -v option tells TLC to be verbose in reporting its activity.

The output of this pair of commands is (date will differ)

My model is called basic.
It was generated on Mon Dec 03 09:42:13 2001.

It has 1 output(s) and 0 continuous states.

You may also try changing the model (such as using rand(2,2) as the value for
the constant block) and then repeating the process to see how the output of TLC
changes.

As you continue through this chapter, you will learn more about creating target
files.
3-7

3 Code Generation Architecture

3-8
Invoking Code Generation
Typically, rtwgen and TLC (as seen in the first section) are called directly from
the Real-Time Workshop build procedure. This avoids problems that may arise
due to command arguments changing from release to release. Thus you
normally invoke rtwgen and tlc when you click the Build (or Generate code)
button on the Real-Time Workshop dialog box. Sometimes, however,
circumstances may require you to execute rtwgen and tlc directly from the
MATLAB prompt.

The rtwgen Command
To generate the model.rtw file from the MATLAB prompt, it usually suffices to
type

rtwgen('model')

However, you may want to specify a build directory in which to place the output
file. You exercise this and other options using the keyword, value syntax.

rtwgen('model','OutputDirectory','<build_directory>')

You may specify other options to rtwgen, such as whether or not identifiers
should have case sensitivity, and reserved keywords. For more details, type

help rtwgen

at the MATLAB prompt.

The tlc Command
Once the .rtw file generates, to run the Target Language Compiler on this file,
type

tlc -r build_directory/model.rtw file.tlc

This generates output as directed by file.tlc. Options to TLC include

• -Ipath, which specifies paths to look for files included by the %<include>
directive (do not insert a space after -I)

• -r model.rtw, the compiled model file from which to generate code (note
required space character before the argument)

Invoking Code Generation
• -aident=expression, which assigns a value to the TLC identifier ident.
Note that there is no space after -a. Usage of -a is discussed in “Configuring
TLC” on page 3-10.

For more details, type

help tlc

at the MATLAB prompt.
3-9

3 Code Generation Architecture

3-1
Configuring TLC
You can control and configure TLC in various ways, as the following sections
explain.

Setting Command Line Arguments
You can enter TLC command line arguments from the MATLAB command line,
or from the TLC Options text field on the Real-Time Workshop pane of the
Configuration Parameters dialog box. This dialog is also accessible via Tools
-> Real-Time Workshop -> Options on the Simulink menu bar.

You can enter commands in the TLC options field, as shown below.

The TLC options field turns yellow after you enter arguments. Click Apply to
use the arguments you enter when the Target LAnguage Compiler processes
the model.

Another way of configuring the TLC code generation process is by using the -a
flag on the TLC command line. That is you must give the TLC command
interactively. Using -amyVar=1 on the command line is equivalent to saying
0

Configuring TLC
%assign myVar = 1

in your target file, or entering it in the TLC options field, as shown above.

You can repeat the -a parameter, which also can be specified in the System
Target File field in the Target Configuration section of the Real-Time
Workshop dialog box.

For an example of how this process works, consider the following TLC code
fragment:

%if !EXISTS(myConfigVariable)
 %assign myConfigVariable = 0
%endif

%if (myConfigVariable == 1)

 code fragment 1

%else

 code fragment 2

%endif

If you specify -amyConfigVariable=1 in the command line, code fragment 1
is generated; otherwise code fragment 2 is generated. The if block starting
with

%if !EXISTS(myConfigVariable)

serves to set the default value of myConfigVariable to 0, so that TLC does not
error out if you forget to add -amyConfigVariable to the command line.

If you use the -a flag to input a string variable, the variable must be enclosed
in double quotes:

-amyStringVariable=”hello”

However, if the string contains any white space, enclose the double quotes
within apostrophes:

-amyStringVariable='”hello world”'
3-11

3 Code Generation Architecture

3-1
You must also do this if there are apostrophes within the string, whether or not
white space is included, and the apostrophes must be escaped (doubled):

-amyStringVariable='”can''t”'

Configuring for TLC Debugging
To configure TLC for debugging via the Configuration Parameters dialog,
select Debug under Real-Time Workshop. This provides the following TLC
Process options for configuring the build process:

The Start TLC debugger when generating code check box lets you activate
the TLC debugger and an option to retain the RTW file. This is covered in more
detail in “Debugging TLC Files” on page 6-1.
2

Code Generation Concepts
Code Generation Concepts
The Target Language Compiler uses a target language that is a general
programming language, and you can use it as such. It is important, however,
to remember that the Target Language Compiler was designed for one purpose:
to convert a model.rtw file to generated code. Thus, the target language
provides many features that are particularly useful for this task but does not
provide some of the features that other languages like C provide.

Before you start modifying or creating target files for use within the Real-Time
Workshop, you might find some of the following general programming
examples useful to familiarize yourself with the basic constructs used within
the Target Language Compiler.

Output Streams
The typical “Hello World” example is rather simple in the target language.
Type the following in a file named hello.tlc:

%selectfile STDOUT
Hello, World

To run this Target Language Compiler program, type

tlc hello.tlc

at the MATLAB prompt.

This simple script demonstrates some important concepts underlying the
purpose (and hence the design) of the Target Language Compiler. Since the
primary purpose of the Target Language Compiler is to generate code, it is
output (or stream) oriented. It makes it easy to handle buffers of text and
output them easily. In the above script, the %selectfile directive tells the
Target Language Compiler to send any following text that it generates or does
not recognize to the standard output device. All syntax that the Target
Language Compiler recognizes begins with the % character. Since Hello,
World is not recognized, it is sent directly to the output. You could just as easily
change the output destination to be a file. The STDOUT stream does not have to
be opened, but must be selected in order to write to the command window.
3-13

3 Code Generation Architecture

3-1
%openfile foo = "foo.txt"
%openfile bar = "bar.txt"
%selectfile foo
This line is in foo.
%selectfile STDOUT
Line has been output to foo.
%selectfile bar
This line is in bar.
%selectfile NULL_FILE
This line will not show up anywhere.
%selectfile STDOUT
About to close bar.
%closefile bar
%closefile foo

Note that you can switch between buffers to display status messages. The
semantics of the three directives, %openfile, %selectfile, and %closefile
are given in the Compiler Directives table.

Variable Types
The absence of explicit type declarations for variables is another feature of the
Target Language Compiler. See “Directives and Built-in Functions” on
page 5-1 for more information on the implicit data types of variables.

Records
One of the constructs most relevant to generating code from the model.rtw file
is a record. A record is very similar to a structure in C or a record in Pascal. The
syntax of a record declaration is

%createrecord recVar { ...
field1 value1 ...
field2 value2 ...
…
fieldN valueN ...

}

where recVar is the name of the variable that references this record while
recType is the record itself. fieldi is a string and valuei is the corresponding
Target Language Compiler value.
4

Code Generation Concepts
Records can have nested records, or subrecords, within them. The model.rtw
file is essentially one large record, named CompiledModel, containing levels of
subrecords. Thus, a simple script that loops through a model and outputs the
name of all blocks in the model would have the following form.

%include "utillib.tlc”
%selectfile STDOUT
%with CompiledModel

%foreach sysIdx = NumNonvirtSubsystems + 1
%assign ss = System[sysIdx]
%with ss

%foreach blkIdx = NumBlocks
%assign block = Block[blkIdx]
%<LibGetFormattedBlockPath(block)>

%endforeach
%endwith

%endforeach
%endwith

Unlike MATLAB, the Target Language Compiler requires that you explicitly
load any function definitions not located in the same target file. In MATLAB,
the line A = myfunc(B) causes MATLAB to automatically search for and load
an M-file or MEX-file named myfunc. The Target Language Compiler, on the
other hand, requires that you specifically include the file that defines the
function. In this case, utillib.tlc contains the definition of
LibGetFormattedBlockPath.

Target Language Compiler provides a %with directive that facilitates using
records. See “Directives and Built-in Functions” on page 5-1 for a detailed
description of the directive and its associated scoping rules.

Note The format and structure of the model.rtw file are subject to change
from one release of Real-Time Workshop to another.

A record read in from a file is not immutable. It is like any other record that
you might declare in a program. In fact, the global CompiledModel Real-Time
Workshop record is modified many times during code generation.
CompiledModel is the global record in the model.rtw file. It contains all the
variables necessary for code generation such as NumNonvirtSubsystems,
3-15

3 Code Generation Architecture

3-1
NumBlocks, etc. It is also appended during code generation with many new
variables, flags, and subrecords as needed.

Functions such as LibGetFormattedBlockPath are provided in the Target
Language Compiler libraries located in matlabroot/rtw/c/tlc/lib/*.tlc.
For a complete list of available functions, refer to “TLC Function Library
Reference” on page 8-1.

Assigning Values to Fields of Records
To assign a value to a field of a record you must use a qualified variable
expression.

A qualified variable expression references a variable in one of the following
forms:

• An identifier

• A qualified variable followed by '.' followed by an identifier, such as
var[2].b

• A qualified variable followed by a bracketed expression such as
var[expr]

Record Aliases
In TLC it is possible to create what is called an alias to a record. Aliases are
similar to pointers to structures in C. You can create multiple aliases to a
single record. Modifications to the aliased record are visible to every place
which holds an alias.

The following code fragment illustrates the use of aliases:

%createrecord foo { field 1 }
%createrecord a { }
%createrecord b { }
%createrecord c { }

%addtorecord a foo foo
%addtorecord b foo foo
%addtorecord c foo { field 1 }

%% notice we are not changing field through a or b.
6

Code Generation Concepts
%assign foo.field = 2

ISALIAS(a.foo) = %<ISALIAS(a.foo)>
ISALIAS(b.foo) = %<ISALIAS(b.foo)>
ISALIAS(c.foo) = %<ISALIAS(c.foo)>

a.foo.field = 2, %<a.foo.field>
b.foo.field = 2, %<b.foo.field>
c.foo.field = 1, %<c.foo.field>
%% note that c.foo.field is unchanged

It is possible to create aliases to records which are not attached to any other
records, as in the following example:

%function func(value) Output
 %createrecord foo { field value }
 %createrecord a { foo foo }
ISALIAS(a.foo) = %<ISALIAS(a.foo)>
 %%return a.foo
 %return a.foo
%endfunction

%assign x = func(2)
ISALIAS(x) = %<ISALIAS(x)>
x = %<x>
x.field = %<x.field>

Saving this script as alias_func.tlc and invoking it with

tlc -v alias_func.tlc

produces the command window output

ISALIAS(a.foo) = 1
ISALIAS(x) = 1
x = { field 2 }
x.field = 2

As long as there is some reference to a record through an alias, that record will
not be deleted. This allows records to be used as return values from functions.
3-17

3 Code Generation Architecture

3-1
TLC Files
The Target Language Compiler works with Simulink to generate code as
shown in the following figure.

Just as a C program is a collection of ASCII files connected with #include
statements and object files linked into one binary, a TLC program is also a
collection of ASCII files, also called scripts. Since the Target Language
Compiler is an interpreted language, however, there are no object files. The
single target file that calls (with the %include directive) all other target files
needed for the program is called the entry point.

Available Target Files
Target files are the set of files that are interpreted by the Target Language
Compiler to transform the intermediate Real-Time Workshop code (model.rtw)
produced by Simulink into target-specific code.

Target files provide you with the flexibility to customize the code generated by
the Compiler to suit your specific needs. By modifying the target files included
with the Compiler, you can dictate what the compiler produces. For example,

Simulink
Custom S-Function

Block sfun.c

TLC.MEX
Inlined S-Function

sfun.tlc

Generated Code
model.c

etc.

- System Target File

- Model-Wide TLC Files

- Block TLC Files

TLC “program” that
specifies how model.rtw
is converted to
generated code.

rtwgen
to create
model.rtw
8

TLC Files
if you use the available system target files, you produce generic C code from
your Simulink model. This executable C code is not platform specific.

All of the parameters used in the target files are read from the model.rtw file
and looked up using block scoping rules. You can define additional parameters
within the target files using the %assign statement. The block scoping rules
and the %assign statement are discussed in “Directives and Built-in
Functions” on page 5-1.

Target files are written using target language directives. “Directives and
Built-in Functions” on page 5-1 provides complete descriptions of the target
language directives.

Model-Wide Target Files and System Target Files
Model-wide target files are used on a model-wide basis and provide basic
information to the Target Language Compiler, which transforms the
model.rtw file into target-specific code.

The system target file is the entry point for the Target Language Compiler. It
is analogous to the main() routine of a C program. System target files oversee
the entire code generation process. For example, the system target file,
grt.tlc, sets up some variables for codegenentry.tlc, which is the entry
point into the Real-Time Workshop target files. For a complete list of available
system target files for Real-Time Workshop, see the Real-Time Workshop
documentation.

There are four sets of model-wide target files, one for each of the basic code
formats that the Real-Time Workshop supports. The following table lists the
model-wide target files associated with each of the basic code formats.
3-19

3 Code Generation Architecture

3-2
Table 3-1: Model-Wide Target Files for Static Real-Time, Malloc (dynamic)
Real-Time, Embedded-C and Real-Time Workshop S-Function Applications

Model-Wide
Target File

Code Format Purpose

ertautobuild.tlc Embedded-C Includes model_export.h in the
generated code

srtbody.tlc
mrtbody.tlc
ertbody.tlc
sfcnbody.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file, model.c,
which contains the procedures
that implement the model

srtexport.tlc
mrtexport.tlc
ertexport.tlc
sfcnbody.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file
model_export.h, which defines
access to external parameters
and signals (all formats)

srthdr.tlc
mrthdr.tlc
erthdr.tlc
sfcnhdr.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file model.h,
which defines the data
structures used by model.c. The
data structures defines include
Block Outputs, Parameters,
External Inputs and Outputs,
and the various work structures.
The instances of these structures
are declared in model.c (all
formats).

srtlib.tlc
mrtlib.tlc
ertlib.tlc
sfclib.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Contains utility functions used
by the other model-wide target
files (all formats)

srtmap.tlc
mrtmap.tlc
ertmap.tlc
sfcnmap.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the header file
model.dt, which contains the
mapping information for
monitoring block outputs and
modifying block parameters
0

TLC Files
sfcnmid.tlc RTW S-function Creates model.c, which contains
data for an RTW S-function

srtparam.tlc
mrtparam.tlc
ertparam.tlc
sfcnparam.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file
model.prm, which is included by
the model.c file to declare
instances of the various data
structures defined in model.h
(all formats)

srtreg.tlc
mrtreg.tlc
ertreg.tlc
sfcnreg.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

Creates the source file model.h
that is included by the model.c
file to satisfy the API (all
formats)

sfcnsid.tlc RTW S-function Creates model.c, which contains
data for an RTW S-function.

srtwide.tlc
mrtwide.tlc
ertwide.tlc
sfcnwide.tlc

Static real-time
Malloc real-time
Embedded-C
RTW S-function

The entry point for code format.
This file produces model.c,
model.h, and, optionally,
model.dt.

Table 3-1: Model-Wide Target Files for Static Real-Time, Malloc (dynamic)
Real-Time, Embedded-C and Real-Time Workshop S-Function Applications

Model-Wide
Target File

Code Format Purpose
3-21

3 Code Generation Architecture

3-2
Block Target Files
Block target files are files that control a particular Simulink block. Typically,
there is a block target file for each Simulink basic building block. These files
control the generation of inline code for the particular block type. For example,
the target file, gain.tlc, generates corresponding code for the Gain block.

The file genmap.tlc (included by codegenentry.tlc) tells TLC which .tlc files
to include for particular blocks.

Note Functions declared inside a block file are local. Functions declared in
all other target files are global.

Summary of Target File Usage
In the context of the Real-Time Workshop, there are two types of target files,
system target files and block target files:

• System target files

System target files determine the overall framework of code generation.
They determine when blocks get executed, how data gets logged, and so on.

• Block target files

Block target files determine how each individual block uses its input signals
and/or parameters to generate its output or to update its state.

You must write or modify a target file if you need to do one of the following:

• Customize the code generated for a block

The code generated for each block is defined by a block target file. Some of
the things defined in the block target file include what the block outputs at
each major time step and what information the block updates.

• Inline an S-function

Inlining an S-function means writing a target file that tells the Target
Language Compiler how to generate code for that S-function block. The
Target Language Compiler can automatically generate code for noninlined
C MEX S-functions. However, if you inline a C MEX S-function, the compiler
2

TLC Files
can generate more efficient code. Noninlined C MEX S-functions are
executed using the S-function Application Program Interface (API) and can
be inefficient.

It is possible to inline an M-file or Fortran S-function; the Target Language
Compiler can generate code for the S-function in both these cases.

• Customize the code generated for all models

You may want to instrument the generated code for profiling, or make other
changes to overall code generation for all models. To accomplish such
changes, you must modify some of the system target files.

• Implement support for a new language

The Target Language Compiler provides the basic framework to configure
the entire Real-Time Workshop for code generation in another language.

Refer to “Directives and Built-in Functions” on page 5-1 for a description of the
Target Language and “Inlining S-Functions” on page 7-1 for a tutorial on using
the Target Language Compiler to inline S-functions.

System Target Files
The entire code generation process starts with the single system target file that
you specify in the Real-Time Workshop pane of the Configuration
Parameters dialog box. Normally, you click the Browse button to activate the
System target file browser for this purpose. A close examination of a system
target file reveals how code generation occurs. This a listing of the noncomment
lines in grt.tlc, the target file to generate code for a generic real-time
executable:

%selectfile NULL_FILE

%assign MatFileLogging = 1
%assign TargetType = "RT"
%assign Language = "C"

%include "codegenentry.tlc"
3-23

3 Code Generation Architecture

3-2
The three variables, MatFileLogging, TargetType, and Language, are global
TLC variables used by other functions. Code generation is then initiated with
the call to codegenentry.tlc, the main entry point for Real-Time Workshop.

If you want to make changes to modify overall code generation, you must
change the system target file. After the initial setup, instead of calling
codegenentry.tlc, you must call your own TLC files. The code below shows an
example system target file called mygrt.tlc.

%% Set up variables, etc.
…
%% Load my library functions
%% Note that mylib.tlc should %include funclib.tlc at the
%% beginning.
%include "mylib.tlc"

%% Load mygenmap, the block target file mapping.
%% mygenmap.tlc should %include genmap.tlc at the beginning.
%include "mygenmap.tlc"

%include "commonsetup.tlc"

%% Next, you can include any of the TLC files that you need for
%% preprocessing information about the model and to fill in
%% Real-Time Workshop hooks. The following is an example of
%% including a single TLC file which contains custom hooks.
%include "myhooks.tlc"

%% Finally, call the code generator.
%include "commonentry.tlc"

Generated code is placed in a model or subsystem function. The relevant
generated function names and their execution order is detailed in the
Real-Time Workshop documentation. During code generation, functions from
each of the block target files are executed and the generated code is placed in
the appropriate model or subsystem functions.
4

TLC Files
Block Target Files
Each block has a target file that determines what code should be generated for
the block. The code can vary depending on the exact parameters of the block or
the types of connections to it (e.g., wide vs. scalar input).

Within each block target file, block functions specify the code to be output for
the block in the model’s or subsystem’s start function, output function, update
function, and so on.

Block Target File Mapping
The block target file mapping specifies which target file should be used to
generate code for which block type. This mapping resides in
matlabroot/rtw/c/tlc/mw/genmap.tlc. All the TLC files listed are located in
directories within matlabroot/rtw/c/tlc.

The Target Language Compiler works with various sets of script files to
produce its results. The complete set of these files is called a TLC program.
This section describes the TLC program files.
3-25

3 Code Generation Architecture

3-2
Data Handling with TLC: An Example

Matrix Parameters in Real-Time Workshop
MATLAB, Simulink, and Real-Time Workshop all use column-major ordering
for all array storage (1-D, 2-D, ...), so that the “next” element of an array in
memory is always accessed by incrementing the first index of the array. For
example, all of these element pairs are stored sequentially in memory: A(i)
and A(i+1), B(i,j) and B(i+1,j), C(i,j,k) and C(i+1,j,k).For more
information on the internal representation of MATLAB data, see “The
MATLAB Array” in External Interfaces/API.

Simulink and Real-Time Workshop differ from MATLAB internal data storage
format only in the storage of complex number arrays. In MATLAB, the real and
imaginary parts are stored in separate arrays, while in Simulink and
Real-Time Workshop they are stored in an “interleaved” format, where the
numbers in memory alternate real, imaginary, real, imaginary, and so forth.
This convention allows efficient implementations of small signals on Simulink
lines and for Mux blocks and other “virtual” signal manipulation blocks (i.e.,
they don’t actively copy their inputs, merely the references to them).

The compiled model file, model.rtw, represents matrices as strings in
MATLAB syntax, with no implied storage format. This is so you can copy the
string out of a .rtw file and paste it into a .m file and have it recognized by
MATLAB.

The Target Language Compiler declares all Simulink block matrix parameters
as scalar or 1-D array variables

real_T scalar;
real_T mat[nRows * nCols];

where real_T could actually be any of the data types supported by Simulink,
and will match the variable type given in a the .mdl file.

For example, the 3-by-3 matrix in the Look-Up Table (2-D) block

1 2 3
4 5 6
7 8 9

is stored in model.rtw as

Parameter {
6

Data Handling with TLC: An Example
Name "OutputValues"
Value Matrix(3,3)

[[1.0, 2.0, 3.0]; [4.0, 5.0, 6.0]; [7.0, 8.0, 9.0];]
String "t"
StringType "Variable"
ASTNode {
 IsNonTerminal 0
 Op SL_NOT_INLINED
 ModelParameterIdx 3
}

}

and results in this definition in model.h

typedef struct Parameters_tag {
 real_T s1_Look_Up_Table_2_D_Table[9];

/* Variable:s1_Look_Up_Table_2_D_Table
 * External Mode Tunable:yes
 * Referenced by block:
 * <S1>/Look-Up Table (2-D)
 */

 [... other parameter definitions ...]

} Parameters;

The model.h file declares the actual storage for the matrix parameter and you
can see that the format is column-major. That is, read down the columns, then
across the rows.

1 2 3

4 5 6

7 8 9
3-27

3 Code Generation Architecture

3-2
Parameters model_P = {
 /* 3 x 3 matrix s1_Look_Up_Table_2_D_Table */
 { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 },
 [... other parameter declarations ...]
};

The Target Language Compiler accesses matrix parameters via
LibBlockMatrixParameter and LibBlockMatrixParameterAddr, where:

LibBlockMatrixParameter(OutputValues, "", "", 0, "", "", 1) returns
"model_P.s1_Look_Up_Table_2_D_Table[nRows]" (automatically optimized
from "[0+nRows*1]") and

LibBlockMatrixParameterAddr(OutputValues, "", "", 0, "", "", 1)
returns "&model_P.s1_Look_Up_Table_2_D_Table[nRows]" for both inlined
and noninlined block TLC code.

Matrix parameters are like any other TLC parameters in that only those
parameters explicitly accessed by a TLC library function during code
generation are placed in the parameters structure. So, following the example,
s1_Look_Up_Table_2_D_Table is not declared unless it is explicitly accessed by
LibBlockParameter or LibBlockParameterAddr.
8

4

Contents of model.rtw

The input to the Target Language Compiler is a model.rtw file, a compilation of model.mdl that
describes blocks, inputs, outputs, parameters, states, storage, and other model components and
properties.

Note Please be aware that the structure of the model.rtw file is very likely to
change between releases, which is a very compelling reason to limit your
access to model.rtw to the TLC library functions documented in “TLC
Function Library Reference” on page 8-1.

Model.rtw File Overview (p. 4-2) Identifiers, values, and the structure of records

Using Library Functions to Access
model.rtw Contents (p. 4-10)

The safe way to access model records, with one exception

4 Contents of model.rtw

4-2
Model.rtw File Overview
Real-Time Workshop generates a model.rtw file from your Simulink model.
The model.rtw file is a database whose contents provide a description of the
individual blocks within the Simulink model. By selecting Retain .rtw file
from the TLC debugging category on the Real-Time Workshop pane of the
Simulation Parameters dialog box, you can build a model and view the
corresponding model.rtw file that was used.

model.rtw is an ASCII file of parameter-value pairs stored in a hierarchy of
records defined by your model. A parameter name/parameter value pair is
specified as

ParameterName value

where ParameterName (also called an identifier) is the name of the TLC
identifier and value is a string, scalar, vector, or matrix. For example, in the
parameter name/parameter value pair

.

.
NumDataOutputPorts 1

.

.

NumDataOutputPorts is the identifier and 1 is its value.

A record is specified as

RecordName {
.
.

}

A record contains parameter name/parameter value pairs and/or subrecords.
For example, this record contains one parameter name/parameter value pair:

DataStores {
 NumDataStores 0
}

Model.rtw File Overview
Using Scopes in the model.rtw File

Accessing Values
Each record creates a new scope. The model.rtw file uses curly braces { and }
to open and close records (or scopes). Using scopes, you can access any value
within the model.rtw file.

The scope in this example begins with CompiledModel. Use periods (.) to access
values within particular scopes. The format of model.rtw is

CompiledModel {
Name "modelname" — Example of a parameter-value

... pair (record field).

System { — There is one system for each

nonvirtual subsystem.

Block { — Block records for each

Type "S-Function" nonvirtual block in the system.

Name "<S3>/S-Function"
...
Parameter {
Name "P1"
Value Matrix(1,2) [[1, 2];]

}
...
Block {
}

}
...
System { — The last system is for the root of

} your model.

}

For example, to access Name within CompiledModel, you would use

CompiledModel.Name

Multiple records of the same name form a list where the index of the first record
starts at 0. To access the above S-function block record, you would use

CompiledModel.System[0].Block[0]
4-3

4 Contents of model.rtw

4-4
To access the name field of this block, you would use

CompiledModel.System[0].Block[0].Name

To simplify this process, you can use the %with directive, which changes the
current scope. For example:

%with CompiledModel.System[0].Block[0]
%assign blockName = Name
%endwith

blockName will have the value "<S3>/S-Function".

When inlining S-function blocks, your S-function block record is scoped as
though the above %with directive was done. In an inlined .tlc file, you should
access fields without a fully qualified path.

The following code shows a more detailed scoping example where the Block
record has several parameter-value pairs (Type, Name, Identifier, and so on),
and three subrecords, each called Parameter. Block is a subrecord of System,
which is a subrecord of CompiledModel.

Model.rtw File Overview
CompiledModel {
Name "simple"

.

.

.

.
System {

Type root
Name "<root>"
Identifier root
NumBlocks 3
Block {
Type Sin
Name "<Root>/Sine Wave"
.
.
.
.
.
Parameters [3, 3, 0]
Parameter {
Name "Amplitude"
.
.

}
Parameter {
Name "Frequency"
.
.

}
Parameter {
Name "Phase"
.
.

}
}

.

.
}

}

Scope 4

Scope 3

Scope 2

Scope 1
4-5

4 Contents of model.rtw

4-6
Object Information in the model.rtw File
During code generation, Real-Time Workshop writes information about signal
and parameter objects to the model.rtw file. An Object record is written for
each parameter or signal that meets certain conditions. These conditions are
described in “Object Records For Parameters” on page 4-6 and “Object Records
For Signals” on page 4-7.

The Object records contain all of the information corresponding to the
associated object. To access Object records, you must write Target Language
Compiler code (see “Accessing Object Information via TLC” on page 4-8).

Object Records For Parameters
An Object record is included in the in the ModelParameters section of the
model.rtw file for each parameter, under the following conditions:

1 The parameter resolves to a Simulink.Parameter object (or to a parameter
object that comes from a class derived from the Simulink.Parameter class).

2 The parameter’s symbol is preserved in the generated code. The symbol is
preserved when:

- Inline parameters is on.

- RTWInfo.StorageClass is not set to 'Auto' or 'SimulinkGlobal'.

The following is an example of an Object record for a parameter.

ModelParameters {
 ...
 Parameter {
 Identifier Kp
 Tunable yes
 ...
 Value [5.0]
 Dimensions [1, 1]
 HasObject 1
 Object {
 Package Simulink
 Class Parameter
 ObjectProperties {
 RTWInfo {
 Object {

Model.rtw File Overview
 Package Simulink
 Class RTWInfo
 ObjectProperties {
 StorageClass "SimulinkGlobal"

}
 }
 }
 Value 5.0
 ...
 }
 }
 }
}

Object Records For Signals
An Object record is included in the BlockOutputs section of the model.rtw file
for each signal which meets the following conditions:

1 The signal resolves to a Simulink.Signal object (or to an object that comes
from a class derived from the Simulink.Signal class).

2 The signal’s symbol is preserved in the generated code. The symbol is
preserved if:

- The signal’s RTWInfo.StorageClass is not set to 'Auto' or
'SimulinkGlobal'.

- The signal label is be a valid variable name.

- The signal label is unique throughout the model.

Note If the signal is configured to be an unstructured global variable in the
generated code, its validity and uniqueness are enforced and its symbol is
always preserved.

The following is an example of an Object record for a signal:

BlockOutputs {
 ...
 BlockOutput {
4-7

4 Contents of model.rtw

4-8
 Identifier SinSig
 ...
 SigLabel "SinSig"
 HasObject 1
 Object {
 Package Simulink
 Class Signal
 ObjectProperties {
 RTWInfo {
 Object {
 Package Simulink
 Class RTWInfo
 ObjectProperties {
 StorageClass "SimulinkGlobal"

}
 }
 }
 ...
 }
 }
}

Accessing Object Information via TLC
This section provides sample code to illustrate how to access object information
from the model.rtw file using TLC code. For more information on TLC and the
model.rtw file, see “model.rtw” on page A-1.

Accessing Parameter Object Records. The following code fragment iterates over the
ModelParameters section of the model.rtw file and extracts information from
any parameter Object records encountered.

%with CompiledModel.ModelParameters
 %foreach modelParamIdx = NumParameters
 %assign thisModelParam = Parameter[modelParamIdx]
 %assign paramName = thisModelParam.Identifier
 %if EXISTS("thisModelParam.Object.ObjectProperties")
 %with thisModelParam.Object.ObjectProperties
 %assign valueInObject = Value
 %with RTWInfo.Object.ObjectProperties
 %assign storageClassInObject = StorageClass

Model.rtw File Overview
%endwith
 %% ***********************************
 %% Access user-defined properties here
 %% ***********************************
 %if EXISTS("MY_PROPERTY_NAME")
 %assign userDefinedPropertyName = MY_PROPERTY_NAME
 %endif
 %% ***********************************
 %endwith
 %endif
 %endforeach
%endwith

Accessing Signal Object Records. The following code fragment iterates over the
BlockOutputs section of the model.rtw file and extracts information from any
signal Object records encountered.

%with CompiledModel.BlockOutputs
 %foreach blockOutputIdx = NumBlockOutputs
 %assign thisBlockOutput = BlockOutput[blockOutputIdx]
 %assign signalName = thisBlockOutput.Identifier
 %if EXISTS("thisBlockOutput.Object.ObjectProperties")
 %with thisBlockOutput.Object.ObjectProperties
 %with RTWInfo.Object.ObjectProperties
 %assign storageClassInObject = StorageClass

%endwith \
 %% ***********************************\
 %% Access user-defined properties here\
 %% ***********************************
 %if EXISTS("MY_PROPERTY_NAME")
 %assign userDefinedPropertyName = MY_PROPERTY_NAME
 %endif
 %% ***********************************
 %endwith
 %endif
 %endforeach
%endwith
4-9

4 Contents of model.rtw

4-1
Using Library Functions to Access model.rtw Contents
There are several library functions that provide access to block inputs, outputs,
parameters, sample times, and other information. It is recommended that you
use these library functions to access many of the parameter name/parameter
values pairs in the block record as apposed to accessing the parameter
name/parameter values pairs directly from your block TLC code.

See “TLC Function Library Reference” on page 8-1 for a list of the commonly
used library functions.

The library functions simplify block TLC code and provide support for loop
rolling, data types, and complex data. The functions also provide a layer to
protect against changes that may occur to the contents of the model.rtw file.

Caution Against Directly Accessing Record Fields
When functions in the block target file are called, they are passed the block and
system records for this instance as arguments. The first argument, block, is in
scope, which means that variable names inside this instances Block record are
accessible by name. For example:

%assign fast = SFcnParamSetting.Fast

Block target files could generate code for a given block by directly using the
fields in the Block record for the block. This process is not recommended for two
reasons:

• The contents of the model.rtw file can change from release to release. This
can cause block TLC files that access the model.rtw file directly to no longer
work.

• TLC library functions are provided that substantially reduce the amount of
TLC code needed to implement a block while handling all the various
configurations (widths, data types, etc.) a block might have. These library
functions are provided by the system target files to provide access to inputs,
outputs, parameters, and so on. Using these functions in a block TLC script
ensures that it will be flexible enough to generate code for any instance or
configuration of the block, as well as across releases. Exceptions to this do
occur, however, as when it is necessary to directly access a field in the block’s
record. This happens with parameter settings, as discussed in “TLC Code to
Access the Parameter Settings” on page 4-11.
0

Using Library Functions to Access model.rtw Contents
Exception to Using the Library Functions
An exception to using these functions is when you access parameter settings for
a block. Parameter settings can be written out using the mdlRTW function of a
C-MEX S-function. They can contain data in the form of strings, scalar values,
vectors, and matrices. They can be used to pass nonchanging values and
information that is then used to affect the generated code for a block or directly
as values in the resulting code of a block.

mdlRTW Function in C-MEX S-Function Code
static void mdlRTW(SimStruct *S)
{
 if (!ssWriteRTWParamSettings(S, 1, SSWRITE_VALUE_QSTR, "Operator", "AND")) {
 ssSetErrorStatus(S,"Error writing parameter data to .rtw file");
 return;
 }
}

Resulting Block Record in model.rtw File
Block {
 Type "S-Function"
 Name "<Root>/S-Function"

 ...

 SFcnParamSettings {
 Operator "AND"
 }
 }

TLC Code to Access the Parameter Settings
%function Outputs(block, system) Output
 %%
 %% Select Operator
 %switch(SFcnParamSettings.Operator)
 %case "AND"
 %assign LogicOp = "&"
 %break
 ...
 %endswitch
%endfunction

For more details on using parameter settings, see “Inlining S-Functions” on
page 7-1.
4-11

4 Contents of model.rtw

4-1
2

5

Directives and Built-in
Functions

You control how code is generated from models largely through writing or modifying scripts that
apply TLC directives and built-in functions. Use the following sections as your primary reference to
the syntax and format of Target Language constructs, as well as the MATLAB tlc command itself.

Compiler Directives (p. 5-2) The syntax and formats of directives, built-in functions,
signal and parameter values, expressions and comments

Command Line Arguments (p. 5-71) Description of TLC calling arguments, filenames and
search paths

5 Directives and Built-in Functions

5-2
Compiler Directives

Syntax
A target language file consists of a series of statements of the form

[text | %<expression>]* and
%keyword [argument1, argument2, …]

Statements of the first type cause all literal text to be passed to the output
stream unmodified, and expressions enclosed in %< > are evaluated before
being written to output (stripped of %< >).

For statements of the second type, keyword represents one of the Target
Language Compiler’s directives, and [argument1, argument2, …] represents
expressions that define any required parameters. For example, the statement

%assign sysNumber = sysIdx + 1

uses the %assign directive to define or change the value of the sysNumber
parameter.

A target language directive must be the first nonblank character on a line and
always begins with the % character. Lines beginning with %% are TLC
comments, and are not passed to the output stream. Lines beginning with /*
are C comments, and are passed to the output stream.

The following table shows the complete set of Target Language Compiler
directives. The remainder of this chapter describes each directive in detail.

Target Language Compiler Directives

Directive Description

%% text Single line comment where text is the comment

/% text %/ Single (or multi-line) comment where text is the comment

%matlab Calls a MATLAB function that does not return a result. For example,
%matlab disp(2.718)

Compiler Directives
%<expr> Target language expressions which are evaluated. For example, if we
have a TLC variable that was created via: %assign varName = "foo",
then %<varName> would expand to foo. Expressions can also be function
calls as in %<FcnName(param1,param2)>. On directive lines, TLC
expressions do not need to be placed within the %<> syntax. Doing so
will cause a double evaluation. For example, %if %<x> == 3 is
processed by creating a hidden variable for the evaluated value of the
variable x. The %if statement then evaluates this hidden variable and
compares it against 3. The efficient way to do this operation is to do:
%if x == 3. In MATLAB notation, this would equate to doing
if eval('x') == 3 as opposed to if x = 3. The exception to this is
during a %assign for format control as in

%assign str = "value is: %<var>"

Note: Nested evaluation expressions (e.g., %<foo(%<expr>)>) are not
supported.

Note: There is no speed penalty for evals inside strings, such as

%assign x = "%<expr>"

Evals outside of strings, such as the following example, should be
avoided whenever possible.

%assign x = %<expr>

Target Language Compiler Directives (Continued)

Directive Description
5-3

5 Directives and Built-in Functions

5-4
%if expr
%elseif expr
%else
%endif

Conditional inclusion, where the constant-expression expr must
evaluate to an integer. For example, the following code checks whether
a parameter, k, has the numeric value 0.0 by executing a TLC library
function to check for equality.

%if ISEQUAL(k, 0.0)
<text and directives to be processed if, k is 0.0>

%endif

In this and other directives, it is not necessary to expand variables or
expressions using the %<expr> notation unless expr appears within a
string. For example:

%if ISEQUAL(idx, “my_idx%<i>”), where idx and i are both strings.

As in other languages, logical evaluations do short circuit (are halted as
soon as the result is known).

%switch expr
%case expr
%break
%default
%break

%endswitch

The switch directive is very similar to the C language switch
statement. The expression, expr, can be of any type that can be
compared for equality using the == operator. If the %break is not
included after a %case statement, then it will fall through to the next
statement.

Target Language Compiler Directives (Continued)

Directive Description

Compiler Directives
%with
%endwith

%with recordName is a scoping operator. Use it to bring the named
record into the current scope, to remain until the matching %endwith is
encountered (%with directives may be nested as desired).

Note that on the left side of %assign statements contained within a
%with / %endwith block, references to fields of records must be fully
qualified (see “Assigning Values to Fields of Records” on page 3-16), as
in the following example.

%with CompiledModel
%assign oldName = name
%assign CompiledModel.name = "newname"

%endwith

%setcommandswitch
string

Changes the value of a command-line switch as specified by the
argument string. Only the following switches are supported: v, m, p,
O, d, r, I, a
The following example sets the verbosity level to 1.
%setcommandswitch "-v1"

See also “Command Line Arguments” on page 5-71.

%assert expr Tests a value of a Boolean expression. If the expression evaluates to
false TLC will issue an error message, a stack trace and exit, and
otherwise the execution will be continued as normal. To enable the
evaluation of asserts outside the Real-Time Workshop environment,
use the command line option “-da”. When building from within RTW,
this flag is not needed and will be ignored, as it is superseded by the
Enable TLC Assertions check box on the TLC debugging section of
the Real-Time Workshop pane. To control assertion handling from the
MATLAB command window, use
set_param(model, 'TLCAssertion', 'on|off') to set this flag on or

off. Default is Off.
get_param(model, 'TLCAssertion') to see the current setting.

Target Language Compiler Directives (Continued)

Directive Description
5-5

5 Directives and Built-in Functions

5-6
%error
%warning
%trace
%exit

Flow control directives:

%error tokens — The tokens are expanded and displayed.

%warning tokens — The tokens are expanded and displayed.

%trace tokens — The tokens are expanded and displayed only when
the “verbose output” command line option -v or -v1 is specified.

%exit tokens — The tokens are expanded, displayed, and TLC exits.

Note, when reporting errors, you should use

%exit Error Message

if the error is produced by an incorrect configuration that the user
needs to correct in the model. If you are adding assert code (i.e., code
that should never be reached), use

%setcommandswitch "-v1" %% force TLC stack trace
%exit Assert message

%assign Creates identifiers (variables). The general form is

%assign [::]variable = expression

The :: specifies that the variable being created is a global variable,
otherwise, it is a local variable in the current scope (i.e., a local variable
in the function).

If you need to format the variable, say, within a string based upon other
TLC variables, then you should perform a double evaluation as in

%assign nameInfo = "The name of this is %<Name>"

or alternately

%assign nameInfo = "The name of this is " + Name

To assign a value to a field of a record you must use a qualified variable
expression. See “Assigning Values to Fields of Records” on page 3-16.

Target Language Compiler Directives (Continued)

Directive Description

Compiler Directives
%createrecord Creates records in memory. This command accepts a list of one or more
record specifications (e.g., { foo 27 }). Each record specification
contains a list of zero or more name-value pairs (e.g., foo 27) that
become the members of the record being created. The values themselves
can be record specifications, as the following illustrates.

%createrecord NEW_RECORD { foo 1 ; SUB_RECORD {foo 2} }
%assign x = NEW_RECORD.foo /* x = 1 */
%assign y = NEW_RECORD.SUB_RECORD.foo /* y = 2 */

If more than one record specification follows a given record name, the
set of record specifications constitutes an array of records.

%createrecord RECORD_ARRAY { foo 1 } ...
{ foo 2 } ...
{ bar 3 }

%assign x = RECORD_ARRAY[1].foo /* x = 2 */
%assign y = RECORD_ARRAY[2].bar /* y = 3 */

Note that arrays of subrecords can be created and indexed by specifying
%createrecord with identically named subrecords, as follows:

%createrecord RECORD_ARRAY { SUB_RECORD { foo 1 } ...
SUB_RECORD { foo 2 } ...
SUB_RECORD { foo 3 } }

%assign x = RECORD_ARRAY.SUB_RECORD[1].foo /* x = 2 */
%assign y = RECORD_ARRAY.SUB_RECORD[2].foo /* y = 3 */

If the scope resolution operator (::) is the first token after he
%createrecord token, the record is created in the global scope.

Target Language Compiler Directives (Continued)

Directive Description
5-7

5 Directives and Built-in Functions

5-8
%addtorecord Adds fields to an existing record. The new fields may be name-value
pairs or aliases to already existing records.

%addtorecord OLD_RECORD foo 1

If the new field being added is a record, then %addtorecord will make an
alias to that record instead of a deep copy. To make a deep copy, use
%copyrecord.

%createrecord NEW_RECORD { foo 1 }
%addtorecord OLD_RECORD NEW_RECORD_ALIAS NEW_RECORD

%mergerecord Adds (or merges) one or more records into another. The first record
will contain the results of the merge of the first record plus the contents
of all the other records specified by the command. The contents of the
second (and subsequent) records are deep copied into the first (i.e., they
are not references).

%mergerecord OLD_RECORD NEW_RECORD

If there are duplicate fields in the records being merged the original
record's fields will not be overwritten.

%copyrecord Makes a deep copy of an existing record. It creates a new record in a
similar fashion to %createrecord except the components of the record
are deep copied from the existing record. Aliases are replaced by copies.

%copyrecord NEW_RECORD OLD_RECORD

%realformat Specifies how to format real variables. To format in exponential
notation with 16 digits of precision, use

%realformat "EXPONENTIAL"

To format without loss of precision and minimal number of characters,
use

%realformat "CONCISE"

When inlining S-functions, the format is set to concise. You can switch
to exponential, but should switch it back to concise when done.

Target Language Compiler Directives (Continued)

Directive Description

Compiler Directives
%language This must appear before the first GENERATE or GENERATE_TYPE function
call. This specifies the name of the language as a string, which is being
generated as in %language "C". Generally, this is added to your system
target file.

%implements Placed within the .tlc file for a specific record type, when mapped via
%generatefile. The syntax is %implements "Type" "Language". When
inlining an S-function in C, this should be the first noncomment line in
the file as in

%implements "s_function_name" "C"

The next noncomment lines will be %function directives specifying the
functionality of the S-function.

See the %language and GENERATE function descriptions for further
information.

%generatefile Provides a mapping between a record Type and functions contained in a
file. Each record can have functions of the same name, but different
contents mapped to it (i.e., polymorphism). Generally, this is used to
map a Block record Type to the .tlc file that implements the
functionality of the block as in

%generatefile "Sin" "sin_wave.tlc"

Target Language Compiler Directives (Continued)

Directive Description
5-9

5 Directives and Built-in Functions

5-1
%filescope Limits the scope of variables to the file in which they are defined. A
%filescope directive, anywhere in a file declares that all variables in
the file are visible only within that file. Note that this limitation also
applies to any files inserted, via the %include directive, into the file
containing the %filescope directive.

The %filescope directive should not be used within functions or
GENERATE functions.

%filescope is useful in conserving memory. Variables whose scope is
limited by %filescope go out of scope when execution of the file
containing them completes. This frees memory allocated to such
variables. By contrast, global variables persist in memory throughout
execution of the program.

%include
%addincludepath

%include "file.tlc" — insert specified target file at the current
point. Use %addincludepath "directory" to add additional paths to be
searched. We recommend UNIX-style forward slashes for directory
names, as they will work on both UNIX and PC systems. However, if
you do use backslashes in PC directory names, be sure to escape them,
e.g., "C:\\mytlc". Alternatively, you can express a PC directory name
as a literal using the L format specifier, as in L"C:\mytlc". All
%include directives behave as if they were in a global context, such
that

%addincludepath "./sub1"
%addincludepath "./sub2"

in a .tlc file enables either subdirectory to be referenced implicitly:

%include "file_in_sub1.tlc"
%include "file_in_sub2.tlc"

Target Language Compiler Directives (Continued)

Directive Description
0

Compiler Directives
%roll
%endroll

Multiple inclusion plus intrinsic loop rolling based upon a specified
threshold. This directive can be used by most Simulink blocks which
have the concept of an overall block width that is usually the width of
the signal passing through the block. An example of the %roll directive
is for a gain operation, y=u*k:

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)

%<y> = %<u> * %<k>;
%endroll

%endfunction

The %roll directive is similar to %foreach, except it iterates the
identifier (sigIdx in this example) over roll regions. Roll regions are
computed by looking at the input signals and generating regions where
the inputs are contiguous. For blocks, the variable RollRegions is
automatically computed and placed in the Block record. An example of
a roll regions vector is [0:19, 20:39], where we have two contiguous
ranges of signals passing through the block. The first is 0:19 and the
second is 20:39. Each roll region is either placed in a loop body (e.g.,
the C Language for statement), or inlined depending upon whether or
not the length of the region is less than the roll threshold.

Each time through the %roll loop, sigIdx is an integer for the start of
the current roll region or an offset relative to the overall block width
when the current roll region is less than the roll threshold. The TLC
global variable RollThreshold is the general model wide value used to
decide when to place a given roll region into a loop. When the decision
is made to place a given region into a loop, the loop control variable will
be a valid identifier (e.g., “i”), otherwise it will be "".

Target Language Compiler Directives (Continued)

Directive Description
5-11

5 Directives and Built-in Functions

5-1
%roll
(continued)

The block parameter is the current block that is being rolled. The
"Roller" parameter specifies the name for internal GENERATE_TYPE
calls made by %roll. The default %roll handler is "Roller", which is
responsible for setting up the default block loop rolling structures (e.g.,
a C for loop).

The rollVars (roll variables) are passed to "Roller" functions to
create the correct roll structures. The defined loop variables relative to
a block are

"U" All inputs to the block. It assumes you use
LibBlockInputSignal(portIdx, "", lcv, sigIdx) to
access each input, where portIdx starts at 0 for the first
input port.

"ui" Similar to "U", except only for specific input, i. The "u" must be
lower case or it wil be interpreted as "U" above.

"Y" All outputs of the block. It assumes you use
LibBlockOutputSignal(portIdx, "", lcv, sigIdx) to
access each output, where portIdx starts at 0 for the first
output port.

"yi" Similar to "Y", except only for specific output, i.The "y" must
be lower case or it wil be interpreted as "Y" above.

"P" All parameters of the block. It assumes you use
LibBlockParameter(name, "", lcv, sigIdx) to access
them.

"<param>/name" Similar to "P", except specific for a specific name.
rwork All RWork vectors of the block. It assumes you use

LibBlockRWork(name, "", lcv, sigIdx) to access them.
"<rwork>/name" Similar to RWork, except for a specific name.
dwork All DWork vectors of the block. It assumes you use

LibBlockDWork(name, "", lcv, sigIdx) to access them.
"<dwork>/name" Similar to DWork, except for a specific name.
iwork All IWork vectors of the block. It assumes you use

LibBlockIWork(name, "", lcv, sigIdx) to access them.
"<iwork>/name" Similar to IWork, except for a specific name.
pwork All PWork vectors of the block. It assumes you use LibBlock-

PWork(name, "", lcv, sigIdx) to access them.
"<pwork>/name" Similar to PWork, except for a specific name.
"Mode" The mode vector. It assumes you use

LibBlockMode("",lcv,sigIdx) to access it.
"PZC" Previous zero crossing state. It assumes you use

Target Language Compiler Directives (Continued)

Directive Description
2

LibPrevZCState("",lcv, sigIdx) to access it.

Compiler Directives
%roll
(continued)

To roll your own vector based upon the block’s roll regions, you need to
walk a pointer to your vector. Assuming your vector is pointed to by the
first PWork, called name,

datatype *buf = (datatype*)%<LibBlockPWork(name,"","",0)
%roll sigIdx = RollRegions, lcv = RollThreshold, block, ...

"Roller", rollVars
*buf++ = whatever;

%endroll

Note: In the above example, sigIdx and lcv are local to the body of the
loop.

%breakpoint Sets a breakpoint for the TLC debugger. See “%breakpoint Directive”
on page 6-8.

%function
%return
%endfunction

A function that returns a value is defined as
%function name(optional-arguments)
%return value

%endfunction

A void function does not produce any output and is not required to
return a value. It is defined as

%function name(optional-arguments) void
%endfunction

A function that produces outputs to the current stream and is not
required to return a value is defined as

%function name(optional-arguments) Output
%endfunction

Target Language Compiler Directives (Continued)

Directive Description
5-13

5 Directives and Built-in Functions

5-1
For block target files, you can add to your inlined .tlc file the following
functions that will get called by the model wide target files during code
generation

%function BlockInstanceSetup(block, system) void
Called for each instance of the block within the model.

%function BlockTypeSetup(block, system) void
Called once for each block type that exists in the model.

%function Enable(block, system) Output
Use this if the block is placed within an enabled subsystem
and has to take specific actions when the subsystem enables.
Place within a subsystem enable routine.

%function Disable(block, system) Output
Use this if the block is placed within a disabled subsystem
and has to take specific actions when the subsystem is
disabled. Place within a subsystem disable routine.

%function Start(block, system) Output
Include this function if your block has startup initialization
code that needs to be placed within MdlStart.

%function
%return
%endfunction
(continued)

Target Language Compiler Directives (Continued)

Directive Description

End

In
te

gr
at

io
nMdlDerivatives

MdlOutputs

MdlStart

Start Execution

MdlOutputs

MdlTerminate

E
xe

cu
ti

on
 L

oo
p

MdlUpdate

MdlDerivatives

MdlZeroCrossings
4

Compiler Directives
%function InitializeConditions(block, system) Output
Use this function if your block has state that needs to be ini-
tialized at the start of execution and when an enabled sub-
system resets states. Place in MdlStart and/or subsystem
initialization routines.

%function Outputs(block, system) Output
The primary function of your block. Place in MdlOutputs.

%function Update(block, system) Output
Use this function if your block has actions to be performed
once per simulation loop, such as updating discrete states.
Place in MdlUpdate

%function Derivatives(block,system) Output
Used this function if your block has derivatives for
MdlDerivatives.

%function ZeroCrossings(block,system) Output
Used this function if your block does zero crossing detection
and has actions to be performed in MdlZeroCrossings.

%function Terminate(block, system) Output
Use this function if your block has actions that need to be in
MdlTerminate.

%foreach
%endforeach

Multiple inclusion that iterates from 0 to the upperLimit-1 constant
integer expression. Each time through the loop, the loopIdentifier, (e.g.,
x) is assigned the current iteration value.

%foreach loopIdentifier = upperLimit
%break — use this to exit the loop
%continue — use this to skip the following code and

continue to the next iteration
%endforeach

Note: The upperLimit expression is cast to a TLC integer value. The
loopIdentifier is local to the loop body.

Target Language Compiler Directives (Continued)

Directive Description
5-15

5 Directives and Built-in Functions

5-1
%for Multiple inclusion directive with syntax

%for ident1 = const-exp1, const-exp2, ident2 = const-exp3
%body
%break
%continue

%endbody
%endfor

The first portion of the %for directive is identical to the %foreach
statement. The %break and %continue directives act the same as they do
in the %foreach directive. const-exp2 is a Boolean expression that
indicates whether the loop should be rolled (see %roll above).

If const-exp2 evaluates to TRUE, ident2 is assigned the value of
const-exp3. Otherwise, ident2 is assigned an empty string.

Note: ident1 and ident2 above are local to the loop body.

%openfile
%selectfile
%closefile

These are used to manage the files that are created. The syntax is

%openfile streamId="filename.ext" mode {open for writing}
%selectfile streamId {select an open file}
%closefile streamId {close an open file}

Note that the “filename.ext” is optional. If no filename is specified, a
variable (string buffer) named streamId is created containing the
output. The mode argument is optional. If specified, it can be "a" for
appending, "r" for reading, or "w" for writing.

Note that the special streamId NULL_FILE specifies that no output
occur. The special streamId STDOUT specifies output to the terminal.

Target Language Compiler Directives (Continued)

Directive Description
6

Compiler Directives
Comments
You can place comments anywhere within a target file. To include comments,
use the /%...%/ or %% directives. For example:

/%
Abstract: Return the field with [width], if field is wide

%/

or

%endfunction %% Outputs function

Use the /%...%/ construct to delimit comments within your code. Use the %%
construct for line-based comments; all characters from %% to the end of the line
become a comment.

Nondirective lines, that is, lines that do not have % as their first nonblank
character, are copied into the output buffer verbatim. For example,

/* Initialize sysNumber */
int sysNumber = 3;

To create a buffer of text, use

%openfile buffer
text to be placed in the 'buffer' variable.
%closefile buffer

Now buffer contains the expanded text specified between the
%openfile and %closefile directives.

%generate %generate blk fn is equivalent to GENERATE(blk,fn).

%generate blk fn type is equivalent to GENERATE(blk,fn,type).

See “GENERATE and GENERATE_TYPE Functions” on page 5-35.

%undef %undef var removes the variable var from scope. If var is a field in a
record, %undef removes that field from the record. If var is a record
array, %undef removes the first element of the array.

Target Language Compiler Directives (Continued)

Directive Description
5-17

5 Directives and Built-in Functions

5-1
copies both lines to the output buffer.

To include comments on lines that do not begin with the % character, you can
use the /%...%/ or %% comment directives. In these cases, the comments are not
copied to the output buffer.

Note If a nondirective line appears within a function, it is not copied to the
output buffer unless the function is an output function or you specifically
select an output file using the %selectfile directive. For more information
about functions, see “Target Language Functions” on page 5-66.

Line Continuation
You can use the C language \ character or the MATLAB sequence ... to
continue a line. If a directive is too long to fit conveniently on one line, this
allows you to split up the directive on to multiple lines. For example:

%roll sigIdx = RollRegions, lcv = RollThreshold, block,\
"Roller", rollVars

or

%roll sigIdx = RollRegions, lcv = RollThreshold, block,...
"Roller", rollVars

Note Use \ to suppress line feeds to the output and the ellipsis (...) to
indicate line continuation. Note that \ and the ellipsis (...) cannot be used
inside strings.
8

Compiler Directives
Target Language Values
This table shows the types of values you can use within the context of
expressions in your target language files. All expressions in the Target
Language Compiler must use these types.

Target Language Values

Value Type
String

Example Description

"Boolean" 1==1 Result of a comparison or other Boolean operator.
The result will be TLC_TRUE or TLC_FALSE.

"Complex" 3.0+5.0i A 64-bit double-precision complex number (double
on the target machine)

"Complex32" 3.0F+5.0Fi A 32-bit single-precision complex number (float
on the target machine)

"File" %openfile x String buffer opened with %openfile

"File" %openfile x = "out.c" File opened with %openfile

"Function" %function foo… A user-defined function and TLC_FALSE otherwise

"Gaussian" 3+5i A 32-bit integer imaginary number (int on the
target machine)

"Identifier" abc Identifier values can only appear within the
model.rtw file and cannot appear in expressions
(within the context of an expression, identifiers
are interpreted as values). To compare against an
identifier value, use a string; the identifier will be
converted as appropriate to a string.

"Matrix" Matrix (3,2) [[1,
2]; [3 , 4]; [5, 6]]

Matrices are simply lists of vectors. The individual
elements of the matrix do not need to be the same
type, and can be any type except vectors or
matrices. The Matrix (3,2) text in the example is
optional.

"Number" 15 An integer number (int on the target machine)
5-19

5 Directives and Built-in Functions

5-2
"Range" [1:5] A range of integers between 1 and 5, inclusive

"Real" 3.14159 A floating-point number (double on the target
machine), including exponential notation

"Real32" 3.14159F A 32-bit single-precision floating-point number
(float on the target machine)

"Scope" Block { … } A block record

"Special" FILE_EXISTS A special built-in function, such as FILE_EXISTS

"String" "Hello, World" ASCII character strings. In all contexts, two
strings in a row are concatenated to form the final
value, as in "Hello, " "World", which is
combined to form "Hello, World". These strings
include all of the ANSI C standard escape
sequences such as \n, \r, \t, etc. Use of line
continuation characters (i.e. \ and ...) inside of
strings is illegal.

"Subsystem" <sub1> A subsystem identifier. Within the context of an
expansion, be careful to escape the delimiters on a
subsystem identifier as in: %<x == <sub\>>.

"Unsigned" 15U A 32-bit unsigned integer (unsigned int on the
target machine)

"Unsigned
Gaussian"

3U+5Ui A 32-bit complex unsigned integer (unsigned int
on the target machine)

"Vector" [1, 2] or
Vector(2) [1, 2]

Vectors are lists of values. The individual elements
of a vector do not need to be the same type, and
may be any type except vectors or matrices.

Target Language Values (Continued)

Value Type
String

Example Description
0

Compiler Directives
Target Language Expressions
In any place throughout a target file, you can include an expression of the form
%<expression>. The Target Language Compiler replaces %<expression> with
a calculated replacement value based upon the type of the variables within the
%<> operator. Integer constant expressions are folded and replaced with the
resultant value; string constants are concatenated (e.g., two strings in a row
"a" "b" are replaced with "ab").

%<expression> /* Evaluates the expression.
* Operators include most standard C
* operations on scalars. Array indexing
* is required for certain parameters that
* are block-scoped within the .rtw file.*/

Within the context of an expression, each identifier must evaluate to an
identifier or function argument currently in scope. You can use the %< >
directive on any line to perform textual substitution. To include the > character
within a replacement, you must escape it with a “\” character as in

%<x \> 1 ? "ABC" : "123">

The Target Language Expressions table lists the operators that are allowed in
expressions. In this table, expressions are listed in order from highest to lowest
precedence. The horizontal lines distinguish the order of operations.

As in C expressions, conditional operators are short circuited. If the expression
includes a function call with effects, the effects are noticed as if the entire
expression was not fully evaluated. For example,

%if EXISTS(foo) && foo == 3

If the first term of the expression evaluates to a Boolean false (i.e., foo does not
exist), the second term (foo == 3) will not be evaluated.

In the following table, note that numeric is one of the following:

• Boolean
• Number
• Unsigned
• Real
• Real32
• Complex
• Complex32
5-21

5 Directives and Built-in Functions

5-2
• Gaussian
• UnsignedGaussian

Also, note that integral is one of the following:

• Number
• Unsigned
• Boolean

See “TLC Data Promotions” on page 5-26 for information on the promotions
that result when the Target Language Compiler operates on mixed types of
expressions.

Target Language Expressions

Expression Definition

constant Any constant parameter value, including
vectors and matrices

variable-name Any valid in-scope variable name, including
the local function scope, if any, and the global
scope

::variable-name Used within a function to indicate that the
function scope is ignored when looking up the
variable. This accesses the global scope.

expr[expr] Index into an array parameter. Array indices
range from 0 to N-1. This syntax is used to
index into vectors, matrices, and repeated
scope variables.

expr([expr[,expr]…]) Function call or macro expansion. The
expression outside of the parentheses is the
function/macro name; the expressions inside
are the arguments to the function or macro.
Note: Since macros are text-based, they
cannot be used within the same expression as
other operators.
2

Compiler Directives
expr. expr The first expression must have a valid scope;
the second expression is a parameter name
within that scope.

(expr) Use () to override the precedence of
operations.

!expr Logical negation (always generates TLC_TRUE
or TLC_FALSE). The argument must be
numeric or Boolean.

-expr Unary minus negates the expression. The
argument must be numeric.

+expr No effect; the operand must be numeric.

~expr Bitwise negation of the operand. The
argument must be integral.

expr * expr Multiply the two expressions together; the
operands must be numeric.

expr / expr Divide the two expressions; the operands
must be numeric.

expr % expr Take the integer modulo of the expressions;
the operands must be integral.

Target Language Expressions (Continued)

Expression Definition
5-23

5 Directives and Built-in Functions

5-2
expr + expr Works on numeric types, strings, vectors,
matrices, and records as follows:

Numeric Types - Add the two expressions
together; the operands must be numeric.

Strings - The strings are concatenated.

Vectors - If the first argument is a vector and
the second is a scalar, it appends the scalar to
the vector.

Matrices - If the first argument is a matrix
and the second is a vector of the same
column-width as the matrix, it appends the
vector as another row in the matrix.

Records - If the first argument is a record, it
adds the second argument as a parameter
identifier (with its current value).

Note, the addition operator is associative.

expr - expr Subtracts the two expressions; the operands
must be numeric.

expr << expr Left shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

expr >> expr Right shifts the left operand by an amount
equal to the right operand; the arguments
must be integral.

expr > expr Tests if the first expression is greater than
the second expression; the arguments must
be numeric.

Target Language Expressions (Continued)

Expression Definition
4

Compiler Directives
expr < expr Tests if the first expression is less than the
second expression; the arguments must be
numeric.

expr >= expr Tests if the first expression is greater than or
equal to the second expression; the
arguments must be numeric.

expr <= expr Tests if the first expression is less than or
equal to the second expression; the
arguments must be numeric.

expr == expr Tests if the two expressions are equal.

expr != expr Tests if the two expression are not equal.

expr & expr Performs the bitwise AND of the two
arguments; the arguments must be integral.

expr ^ expr Performs the bitwise XOR of the two
arguments; the arguments must be integral.

expr | expr Performs the bitwise OR of the two
arguments; the arguments must be integral.

expr && expr Performs the logical AND of the two
arguments and returns TLC_TRUE or
TLC_FALSE. This can be used on either
numeric or Boolean arguments.

expr || expr Performs the logical OR of the two arguments
and returns TLC_TRUE or TLC_FALSE. This can
be used on either numeric or Boolean
arguments.

Target Language Expressions (Continued)

Expression Definition
5-25

5 Directives and Built-in Functions

5-2
Note Relational operators (<, =<, >, >=, !=, ==) can be used with
nonfinite values.

Reminder It is not necessary to place expressions in the %< > “eval” format
when they appear on directive lines. Doing so causes a double evaluation.

TLC Data Promotions
When the Target Language Compiler operates on mixed types of expressions,
it promotes the result to the common types indicated in the following table.

This table uses the following abbreviations:

expr ? expr : expr Tests the first expression for TLC_TRUE. If
true, the first expression is returned;
otherwise the second expression is returned.

expr , expr Returns the value of the second expression.

B Boolean

N Number

U Unsigned

F Real32

D Real

G Gaussian

UG UnsignedGaussian

C32 Complex32

C Complex

Target Language Expressions (Continued)

Expression Definition
6

Compiler Directives
The top row (in bold) and first column (in bold) show the types of expression
used in the operation. The intersection of the row and column shows the
resulting type of expression.

For example, if the operation involves a Boolean expression (B) and an
unsigned expression (U), the result will be an unsigned expression (U).

Formatting
By default, the Target Language Compiler outputs all floating-point numbers
in exponential notation with 16 digits of precision. To override the default, use
the directive

%realformat string

If string is "EXPONENTIAL", the standard exponential notation with 16 digits
of precision is used. If string is "CONCISE", the Compiler uses a set of internal
heuristics to output the values in a more readable form while maintaining
accuracy. The %realformat directive sets the default format for Real number
output to the selected style for the remainder of processing or until it
encounters another %realformat directive.

Table 5-1: Datatypes Resulting from Expressions of Mixed Type

B N U F D G UG C32 C

B B N U F D G UG C32 C

N N N U F D G UG C32 C

U U U U F D UG UG C32 C

F F F F F D C32 C32 C32 C

D D D D D D C C C C

G G G UG C32 C G UG C32 C

UG UG UG UG C32 C UG UG C32 C

C32 C32 C32 C32 C32 C C32 C32 C32 C

C C C C C C C C C C
5-27

5 Directives and Built-in Functions

5-2
Conditional Inclusion
The conditional inclusion directives are

%if constant-expression
%else
%elseif constant-expression
%endif

and

%switch constant-expression
%case constant-expression
%break
%default
%endswitch

%if
The constant-expression must evaluate to an integral expression. It controls
the inclusion of all the following lines until it encounters a %else, %elseif, or
%endif directive. If the constant-expression evaluates to 0, the lines
following the directive are not included. If the constant-expression evaluates
to any other integral value, the lines following the %if directive are included
up until the %endif, %elseif, or %else directives.

When the Compiler encounters an %elseif directive, and no prior %if or
%elseif directive has evaluated to nonzero, the Compiler evaluates the
expression. If the value is 0, the lines following the %elseif directive are not
included. If the value is nonzero, the lines following the %elseif directive are
included up until the subsequent %else, %elseif, or %endif directive.

The %else directive begins the inclusion of source text if all of the previous
%elseif statements or the original %if statement evaluates to 0; otherwise, it
prevents the inclusion of subsequent lines up to and including the following
%endif.

The constant-expression can contain any expression specified in “Target
Language Expressions” on page 5-21.
8

Compiler Directives
%switch
The %switch statement evaluates the constant expression and compares it to
all expressions appearing on %case selectors. If a match is found, the body of
the %case is included; otherwise the %default is included.

%case ... %default bodies flow together, as in C, and %break must be used to
exit the switch statement. %break will exit the nearest enclosing %switch,
%foreach, or %for loop in which it appears. For example:

%switch(type)
%case x

/* Matches variable x. */
/* Note: Any valid TLC type is allowed. */

%case "Sin"
/* Matches Sin or falls through from case x. */
%break
/* Exits the switch. */

%case "gain"
/* Matches gain. */
%break

%default
/* Does not match x, "Sin," or "gain." */

%endswitch

In general, this is a more readable form for the %if/%elseif/%else
construction.

Multiple Inclusion

%foreach
The syntax of the %foreach multiple inclusion directive is

%foreach identifier = constant-expression
%break
%continue

%endforeach

The constant-expression must evaluate to an integral expression, which
then determines the number of times to execute the foreach loop. The
identifier increments from 0 to one less than the specified number. Within
the foreach loop, you can use x, where x is the identifier, to access the identifier
5-29

5 Directives and Built-in Functions

5-3
variable. %break and %continue are optional directives that you can include in
the %foreach directive:

• %break can be used to exit the nearest enclosing %for, %foreach, or %switch
statement.

• %continue can be used to begin the next iteration of a loop.

%for

Note The %for directive is functional, but it is not recommended. Rather, use
%roll, which provides the same capability in a more open way. The Real-Time
Workshop does not make use of the %for construct.

The syntax of the %for multiple inclusion directive is

%for ident1 = const-exp1, const-exp2, ident2 = const-exp3
%body

%break
%continue

%endbody
%endfor

The first portion of the %for directive is identical to the %foreach statement in
that it causes a loop to execute from 0 to N-1 times over the body of the loop. In
the normal case, it includes only the lines between %body and %endbody, and
the lines between the %for and %body, and ignores the lines between the
%endbody and %endfor.

The %break and %continue directives act the same as they do in the %foreach
directive.

const-exp2 is a Boolean expression that indicates whether the loop should be
rolled. If const-exp2 is true, ident2 receives the value of const-exp3;
otherwise it receives the null string. When the loop is rolled, all of the lines
between the %for and the %endfor are included in the output exactly one time.
ident2 specifies the identifier to be used for testing whether the loop was rolled
within the body. For example:

%for Index = <NumNonVirtualSubsystems>3, rollvar="i"
0

Compiler Directives
 {
 int i;

 for (i=0; i< %<NumNonVirtualSubsystems>; i++)
 {

%body
x[%<rollvar>] = system_name[%<rollvar>];

%endbody

 }
 }
%endfor

If the number of nonvirtual subsystems (NumNonVirtualSubsystems) is greater
than or equal to 3, the loop is rolled, causing all of the code within the loop to
be generated exactly once. In this case, Index = 0.

If the loop is not rolled, the text before and after the body of the loop is ignored
and the body is generated NumNonVirtualSubsystems times.

This mechanism gives each individual loop control over whether or not it
should be rolled.

%roll
The syntax of the %roll multiple inclusion directive is

%roll ident1 = roll-vector-exp, ident2 = threshold-exp, ...
block-exp [, type-string [,exp-list]]

%break
%continue

%endroll

This statement uses the roll-vector-exp to expand the body of the %roll
statement multiple times as in the %foreach statement. If a range is provided
in the roll-vector-exp and that range is larger than the threshold-exp
expression, the loop will roll. When a loop rolls, the body of the loop is expanded
once and the identifier (ident2) provided for the threshold expression is set to
the name of the loop control variable. If no range is larger than the specified
rolling threshold, this statement is identical in all respects to the %foreach
statement.

For example:
5-31

5 Directives and Built-in Functions

5-3
%roll Idx = [1 2 3:5, 6, 7:10], lcv = 10, ablock
%endroll

In this case, the body of the %roll statement expands 10 times as in the
%foreach statement since there are no regions greater than or equal to 10. Idx
counts from 1 to 10, and lcv is set to the null string, "".

When the Target Language Compiler determines that a given block will roll, it
performs a GENERATE_TYPE function call to output the various pieces of the loop
(other than the body). The default type used is Roller; you can override this
type with a string that you specify. Any extra arguments passed on the %roll
statement are provided as arguments to these special-purpose functions. The
called function is one of these four functions.

RollHeader(block, …). This function is called once on the first section of this roll
vector that will actually roll. It should return a string that is assigned to the
lcv within the body of the %roll statement.

LoopHeader(block, StartIdx, Niterations, Nrolled, …). This function is called once for
each section that will roll prior to the body of the %roll statement.

LoopTrailer(block, Startidx, Niterations, Nrolled, …). This function is called once for
each section that will roll after the body of the %roll statement.

RollTrailer(block, …). This function is called once at the end of the %roll
statement if any of the ranges caused loop rolling.

These functions should output any language-specific declarations, loop code,
and so on as required to generate correct code for the loop. An example of a
Roller.tlc file is

%implements Roller "C"
%function RollHeader(block) Output

{
int i;

%return ("i")
%endfunction

%function LoopHeader(block,StartIdx,Niterations,Nrolled) Output
 for (i = %<StartIdx>; i < %<Niterations+StartIdx>; i++)

{
%endfunction
2

Compiler Directives
%function LoopTrailer(block,StartIdx,Niterations,Nrolled) Output
}

%endfunction

%function RollTrailer(block) Output
}

%endfunction

Note The Target Language Compiler function library provided with
Real-Time Workshop has the capability to extract references to the block I/O
and other Real-Time Workshop vectors that vastly simplify the body of the
%roll statement. These functions include LibBlockInputSignal,
LibBlockOutputSignal, LibBlockParameter, LibBlockRWork, LibBlockIWork,
LibBlockPWork, and LibDeclareRollVars, LibBlockMatrixParameter,
LibBlockParameterAddr, LibBlockContinuousState, and
LibBlockDiscreteState function reference pages in “TLC Function Library
Reference” on page 8-1. This library also includes a default implementation of
Roller.tlc an a “flat” roller.

Extending the former example to a loop that rolls

%language "C"
%assign ablock = BLOCK { Name "Hi" }
%roll Idx = [1:20, 21, 22, 23:25, 26:46], lcv = 10, ablock

Block[%< lcv == "" ? Idx : lcv>] *= 3.0;
%endroll

This Target Language Compiler code produces this output:

{
int i;
for (i = 1; i < 21; i++)
{
 Block[i] *= 3.0;
}
Block[21] *= 3.0;
Block[22] *= 3.0;
Block[23] *= 3.0;
Block[24] *= 3.0;
5-33

5 Directives and Built-in Functions

5-3
Block[25] *= 3.0;
for (i = 26; i < 47; i++)
{
 Block[i] *= 3.0;
}

}

Object-Oriented Facility for Generating Target Code
The Target Language Compiler provides a simple object-oriented facility. The
language directives are

%language string
%generatefile
%implements

This facility was designed specifically for customizing the code for Simulink
blocks, but can be used for other purposes as well.

%language
The %language directive specifies the target language being generated. It is
required as a consistency check to ensure that the correct implementation files
are found for the language being generated. The %language directive must
appear prior to the first GENERATE or GENERATE_TYPE built-in function call.
%language specifies the language as a string. For example,

%language "C"

All blocks in Simulink have a Type parameter. This parameter is a string that
specifies the type of the block, e.g., "Sin" or "Gain". The object-oriented facility
uses this type to search the path for a file that implements the correct block.
By default the name of the file is the Type of the block with .tlc appended, so
for example, if the Type is "Sin" the Compiler would search for "Sin.tlc"
along the path. You can override this default filename using the
%generatefile directive to specify the filename that you want to use to replace
the default filename. For example:

%generatefile "Sin" "sin_wave.tlc"

The files that implement the block-specific code must contain a %implements
directive indicating both the type and the language being implemented. The
4

Compiler Directives
Target Language Compiler will produce an error if the %implements directive
does not match as expected. For example,

%implements "Sin" "Pascal"

causes an error if the initial language choice was C.

You can use a single file to implement more than one target language by
specifying the desired languages in a vector. For example:

%implements "Sin" "C"

Finally, you can implement several types using the wildcard (*) for the type
field:

%implements * "C"

Note The use of the wildcard (*) is not recommended because it relaxes error
checking for the %implements directive.

GENERATE and GENERATE_TYPE Functions
The Target Language Compiler has two built-in functions that dispatch
object-oriented calls, GENERATE and GENERATE_TYPE. You can call any function
appearing in an implementation file (from outside the specified file) only by
using the GENERATE and GENERATE_TYPE special functions.

GENERATE. The GENERATE function takes two or more input arguments. The first
argument must be a valid scope and the second a string containing the name
of the function to call. The GENERATE function passes the first block argument
and any additional arguments specified to the function being called. The return
argument is the value (if any) returned from the function being called. Note
that the Compiler automatically “scopes” or adds the first argument to the list
of scopes searched as if it appears on a %with directive line. (See “Variable
Scoping” on page 5-56.) This scope is removed when the function returns.

GENERATE_TYPE. The GENERATE_TYPE function takes three or more input
arguments. It handles the first two arguments identically to the GENERATE
function call. The third argument is the type; the type specified in the Simulink
block is ignored. This facility is used to handle S-function code generation by
the Real-Time Workshop. That is, the block type is S-function, but the Target
5-35

5 Directives and Built-in Functions

5-3
Language Compiler generates it as the specific S-function specified by
GENERATE_TYPE. For example,

GENERATE_TYPE(block, "Output", "dp_read")

specifies that S-function block is of type dp_read.

The block argument and any additional arguments are passed to the function
being called. Similar to the GENERATE built-in function, the Compiler
automatically scopes the first argument before the GENERATE_TYPE function is
entered and then removes the scope on return.

Within the file containing %implements, function calls are looked up first
within the file and then in the global scope. This makes it possible to have
hidden helper functions used exclusively by the current object.

Note It is not an error for the GENERATE and GENERATE_TYPE directives to find
no matching functions. This is to prevent requiring empty specifications for all
aspects of block code generation. Use the GENERATE_FUNCTION_EXISTS or
GENERATE_TYPE_FUNCTION_EXISTS directives to determine if the specified
function actually exists.

Output File Control
The structure of the output file control construct is

%openfile string optional-equal-string optional-mode
%closefile id
%selectfile id

%openfile
The %openfile directive opens a file or buffer for writing; the required string
variable becomes a variable of type file. For example:

%openfile x /% Opens and selects x for writing. %/
%openfile out = "out.h" /% Opens "out.h" for writing. %/
6

Compiler Directives
%selectfile
The %selectfile directive selects the file specified by the variable as the
current output stream. All output goes to that file until another file is selected
using %selectfile. For example:

%selectfile x /% Select file x for output. %/

%closefile
The %closefile directive closes the specified file or buffer, and if this file is the
currently selected stream, %closefile invokes %selectfile to reselect the last
previously selected output stream.

There are two possible cases that %closefile must handle:

• If the stream is a file, the associated variable is removed as if by %undef.

• If the stream is a buffer, the associated variable receives all the text that has
been output to the stream. For example:

%assign x = "" /% Creates an empty string. %/
%openfile x
"hello, world"
%closefile x /% x = "hello, world\n"%/

If desired, you can append to an output file or string by using the optional
mode, a, as in

%openfile "foo.c", "a" %% Opens foo.c for appending.

Input File Control
The input file control directives are

%include string
%addincludepath string

%include
The %include directive searches the path for the target file specified by string
and includes the contents of the file inline at the point where the %include
statement appears.
5-37

5 Directives and Built-in Functions

5-3
%addincludepath
The %addincludepath directive adds an additional include path to be searched
when the Target Language Compiler references %include or block target files.
The syntax is

%addincludepath string

The string can be an absolute path or an explicit relative path. For example,
to specify an absolute path, use

%addincludepath "C:\\directory1\\directory2" (PC)
%addincludepath "/directory1/directory2" (UNIX)

To specify a relative path, the path must explicitly start with “.”. For example:

%addincludepath ".\\directory2" (PC)
%addincludepath "./directory2" (UNIX)

Note that for PC, the backslashes must be escaped (doubled).

When an explicit relative path is specified, the directory that is added to the
Target Language Compiler search path is created by concatenating the
location of the target file that contains the %addincludepath directive and the
explicit relative path.

The Target Language Compiler searches the directories in the following order
for target or include files:

1 The current directory

2 Any %addincludepath directives

3 Any include paths specified at the command line via -I (in reverse order)

Typically, %addincludepath directives should be specified in your system
target file. Multiple %addincludepath directives will add multiple paths to the
Target Language Compiler search path.

Asserts, Errors, Warnings, and Debug Messages
The related assert, error, warning, and debug message directives are

%assert expression
%error tokens
8

Compiler Directives
%warning tokens
%trace tokens
%exit tokens

These directives produce error, warning, or trace messages whenever a target
file detects an error condition, or tracing is desired. All of the tokens following
the directive on a line become part of the generated error or warning message.

The Target Language Compiler places messages generated by %trace onto
stderr if and only if you specify the verbose mode switch (-v) to the Target
Language Compiler. See “Command Line Arguments” on page 5-71 for
additional information about switches.

The %assert directive will evaluate the expression and will produce a stack
trace if the expression evaluates to a Boolean false.

Note In order for %assert directives to be evaluated, Enable TLC
Assertions must be selected on the TLC debugging section of the Real-Time
Workshop pane. The default action is for asserts not to be evaluated.

The %exit directive reports an error and stops further compilation.

Built-In Functions and Values
The following table lists the built-in functions and values that are added to the
list of parameters that appear in the model.rtw file. These Target Language
Compiler functions and values are defined in uppercase so that they are
visually distinct from other parameters in the model.rtw file, and by
convention, from user-defined parameters.
5-39

5 Directives and Built-in Functions

5-4
TLC Built-in Functions and Values

Built-In Function Name Expansion

CAST(expr, expr) The first expression must be a string that corresponds to
one of the type names in the Target Language Values table,
and the second expression will be cast to that type. A
typical use might be to cast a variable to a real format as in
CAST("Real", variable-name)

An example of this is in working with parameter values for
S-functions. To use them within C code, you need to
typecast them to real so that a value such as “1” will be
formatted as “1.0” (see also %realformat).

EXISTS(var) If the var identifier is not currently in scope, the result is
TLC_FALSE. If the identifier is in scope, the result is
TLC_TRUE. var can be a single identifier or an expression
involving the . and [] operators.

Note: prior to TLC release 4, the semantics of EXISTS
differed from the above. See “Compatibility Issues” on
page 1-19.

FEVAL(matlab-command,
TLC-expressions)

Performs an evaluation in MATLAB. For example
%assign result = FEVAL("sin",3.14159)

The %matlab directive can be used to call a MATLAB func-
tion that does not return a result. For example:
%matlab disp(2.718)

Note: if the MATLAB function returns more than one
value, TLC only receives the first value.

FILE_EXISTS(expr) expr must be a string. If a file by the name expr does not
exist on the path, the result is TLC_FALSE. If a file by that
name exists on the path, the result is TLC_TRUE.
0

Compiler Directives
FORMAT(realvalue, format) The first expression is a Real value to format. The second
expression is either "EXPONENTIAL" or "CONCISE". Outputs
the Real value in the designated format where
EXPONENTIAL uses exponential notation with 16 digits of
precision, and CONCISE outputs the number in a more
readable format while maintaining numerical accuracy.

FIELDNAMES(record) Returns a array of strings containing the record field
names associated with the record. As it returns a sorted list
of strings, function is O(n*log(n)).

GETFIELD(record,
“fieldname”)

Returns the contents of the specified field name, if the field
name is associated with the record. By virtue of hash
lookup, executes in constant time

GENERATE(record,
function-name, ...)

This is used to execute function calls mapped to a specific
record type (i.e., Block record functions). For example, use
this to execute the functions in the .tlc files for built-in
blocks. Note, TLC automatically “scopes” or adds the first
argument to the list of scopes searched as if it appears on a
%with directive line.

GENERATE_FILENAME(type) For the specified record type, does a .tlc file exist? Use
this to see if the GENERATE_TYPE call will succeed.

GENERATE_FORMATTED_VALUE
(expr, string, expand)

Returns a potentially multiline string that can be used to
declare the value(s) of expr in the current target language.
The second argument is a string that is used as the
variable name in a descriptive comment on the first line of
the return string. If the second argument is the empty
string, "", then no descriptive comment is put into the
output string. The third argument is a Boolean, which
when TRUE, causes expr to be expanded into raw text before
being output. expand = TRUE uses much more memory than
the default (FALSE); set expand = TRUE only if the
parameter text needs to be processed for some reason
before being written to disk.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
5-41

5 Directives and Built-in Functions

5-4
GENERATE_FUNCTION_EXISTS
(record, function-name)

Determines if a given block function exists. The first
expression is the same as the first argument to GENERATE,
namely a block scoped variable containing a Type. The
second expression is a string that should match the
function name.

GENERATE_TYPE
(record, function-name,
type, ...)

Similar to GENERATE, except type overrides the Type field of
the record. Use this when executing functions mapped to
specific S-function blocks records based upon the S-function
name (i.e., name becomes type).

GENERATE_TYPE_FUNCTION_EXIST
S

(record, function-name,
type)

Same as GENERATE_FUNCTION_EXISTS except it overrides
the Type built into the record.

GET_COMMAND_SWITCH Returns the value of command-line switches. Only the
following switches are supported: v, m, p, O, d, dr, r,
I, a
See also “Command Line Arguments” on page 5-71.

IDNUM(expr) expr must be a string. The result is a vector where the first
element is a leading string (if any) and the second element
is a number appearing at the end of the input string. For
example:

IDNUM("ABC123") yields ["ABC", 123]

IMAG(expr) Returns the imaginary part of a complex number.

INT8MAX 127

INT8MIN -128

INT16MAX 32767

INT16MIN -32768

INT32MAX 2147483647

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
2

Compiler Directives
INT32MIN -2147483648

INTMIN Minimum integer value on target machine

INTMAX Maximum integer value on target machine

ISALIAS(record) Returns TLC_TRUE if the record is a reference (symbolic
link) to a different record, and TLC_FALSE otherwise.

ISEQUAL(expr1, expr2) Where the datatypes of both expressions are numeric:
returns TLC_TRUE if the first expression contains the same
value as the second expression; returns TLC_FALSE
otherwise.

Where the datatype of either expression is non- numeric
(e.g. string or record): returns TLC_TRUE if and only if both
expressions have the same datatype and contain the same
value; returns TLC_FALSE otherwise.

ISEMPTY(expr) Returns TLC_TRUE if the expression contains an empty
string, vector, or record, and TLC_FALSE otherwise.

ISFIELD(record, “fieldname”) Returns TLC_TRUE if the field name is associated to the
record, and TLC_FALSE otherwise.

ISINF(expr) Returns TLC_TRUE if the value of the expression is inf and
TLC_FALSE otherwise.

ISNAN(expr) Returns TLC_TRUE if the value of the expression is NAN, and
TLC_FALSE otherwise.

ISFINITE(expr) Returns TLC_TRUE if the value of the expression is not +/-
inf or NAN, and TLC_FALSE otherwise.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
5-43

5 Directives and Built-in Functions

5-4
ISSLPRMREF(param.value) Returns a Boolean value indicating whether its argument
is a reference to a Simulink parameter or not. This function
supports parameter sharing with Simulink; using it can
save memory and time during code generation. Example:

%if !ISSLPRMREF(param.Value)
assign param.Value = CAST("Real", param.Value)

%endif

NULL_FILE A predefined file for no output that you can use as an
argument to
%selectfile to prevent output.

NUMTLCFILES The number of target files used thus far in expansion.

OUTPUT_LINES Returns the number of lines that have been written to the
currently selected file or buffer. Does not work for STDOUT or
NULL_FILE

REAL(expr) Returns the real part of a complex number.

REMOVEFIELD(record,
“fieldname”)

Removes the specified field from the contents of the record.
Returns TLC_TRUE if the field was removed; otherwise
returns TLC_FALSE.

ROLL_ITERATIONS() Returns the number of times the current roll regions are
looping or NULL if not inside a %roll construct.

SETFIELD(record,
“fieldname”, value)

Sets the contents of the field name associated to the record.
Returns TLC_TRUE if the field was added; otherwise returns
TLC_FALSE.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
4

Compiler Directives
SIZE(expr[,expr]) Calculates the size of the first expression and generates a
two-element, row vector. If the second operand is specified,
it is used as an integral index into this row vector;
otherwise the entire row vector is returned. SIZE(x)
applied to any scalar returns [1 1]. SIZE(x) applied to any
scope returns the number of repeated entries of that scope
type (e.g., SIZE(Block) returns
[1,<number of blocks>].

SPRINTF(format,var,...) Formats the data in variable var (and in any additional
variable arguments) under control of the specified format
string, and returns a string variable containing the values.
Operates like C library sprintf(), except that output is
the return value rather than contained in an argument to
sprintf.

STDOUT A predefined file for stdout output. You can use this as an
argument to %selectfile to force output to stdout.

STRING(expr) Expands the expression into a string; the characters \, \n,
and " are escaped by preceding them with \ (backslash).
All the ANSI escape sequences are translated into string
form.

STRINGOF(expr) Accepts a vector of ASCII values and returns a string that
is constructed by treating each element as the ASCII code
for a single character. Used primarily for S-function string
parameters in Real-Time Workshop.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
5-45

5 Directives and Built-in Functions

5-4
SYSNAME(expr) Looks for specially formatted strings of the form <x>/y and
returns x and y as a 2-element string vector. This is used to
resolve subsystem names in Real-Time Workshop. For
example,

%<sysname("<sub>/Gain")>

returns

["sub","Gain"]

In Block records, the name of the block is written similar to
<sys/blockname> where sys is S# or Root. You can obtain
the full pathname by calling LibGetBlockPath(block); this
will include newlines and other troublesome characters
that cause display difficulties. To obtain a full pathname
suitable for one line comments but not identical to the
Simulink pathname, use
LibGetFormattedBlockPath(block).

TLCFILES Returns a vector containing the names of all the target files
included thus far in the expansion. Absolute paths are
used. See also NUMTLCFILES.

TLC_FALSE Boolean constant which equals a negative evaluated
Boolean expression.

TLC_TRUE Boolean constant which equals a positive evaluated
Boolean expression.

TLC_TIME The date and time of compilation.

TLC_VERSION The version and date of the Target Language Compiler.

TYPE(expr) Evaluates expr and determines the result type. The result
of this function is a string that corresponds to the type of
the given expression. See value type string in the table
“Target Language Values,” for possible values.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion
6

Compiler Directives
FEVAL Function
The FEVAL built-in function calls MATLAB M-file functions and
MEX-functions. The structure is

%assign result = FEVAL(matlab-function-name, rhs1, rhs2, ...
rhs3, ...);

Note Only a single left-side argument is allowed when calling MATLAB.

This table shows the conversions that are made when calling MATLAB.

UINT8MAX 255U

UINT16MAX 65535U

UINT32MAX 4294967295U

UINTMAX Maximum unsigned integer value on target machine.

WHITE_SPACE(expr) Accepts a string and returns 1 if the string contains only
whitespace characters (, \t, \n, \r); returns 0 otherwise.

WILL_ROLL(expr1, expr2) The first expression is a roll vector and the second
expression is a roll threshold. This function returns true if
the vector contains a range that will roll.

TLC Built-in Functions and Values (Continued)

Built-In Function Name Expansion

MATLAB Conversions

TLC Type MATLAB Type

"Boolean" Boolean (scalar or Matrix)

"Number" Double (scalar or Matrix)

"Real" Double (scalar or Matrix)

"Real32" Double (scalar or Matrix)
5-47

5 Directives and Built-in Functions

5-4
"Unsigned" Double (scalar or Matrix)

"String" String

"Vector" If the vector is homogeneous, it will convert to a
MATLAB vector of the appropriate value. If the
vector is heterogeneous, it converts to a MATLAB
cell array.

"Gaussian" Complex (scalar or Matrix)

"UnsignedGaussian" Complex (scalar or Matrix)

"Complex" Complex (scalar or Matrix)

"Complex32" Complex (scalar or Matrix)

"Identifier" String

"Subsystem" String

"Range" expanded vector of Doubles

"Idrange" expanded vector of Doubles

"Matrix" If the matrix is homogeneous, it will convert to a
MATLAB matrix of the appropriate value. If the
matrix is heterogeneous, it converts to a MATLAB
cell array. (Cell arrays can be nested.)

"Scope" or "Record" Structure with elements

Scope or Record
alias

String containing fully qualified alias name

Scope or Record
array

Cell array of structures

Any other type Conversion not supported

MATLAB Conversions (Continued)

TLC Type MATLAB Type
8

Compiler Directives
When values are returned from MATLAB, they are converted as shown in this
table. Note that conversion of matrices with more than two dimensions is not
supported, nor is conversion or downcast of 64-bit integer values,

More Conversions

MATLAB Type TLC Type

String String

Vector of Strings Vector of Strings

Boolean (scalar or Matrix) Boolean (scalar or Matrix)

INT8,INT16,INT32
(scalar or Matrix)

Number (scalar or Matrix)

INT64 Not supported

UINT64 Not supported

Complex INT8,INT16,INT32
(scalar or Matrix)

Gaussian (scalar or Matrix)

UINT8,UINT16,UINT32
(scalar or Matrix)

Unsigned (scalar or Matrix)

Complex UINT8,UINT16,UINT32
(scalar or Matrix)

UnsignedGaussian (scalar or Matrix)

Single precision Real32 (scalar or Matrix)

Complex single precision Complex32 (scalar or Matrix)

Double precision Real (scalar or Matrix)

Complex double precision Complex (scalar or Matrix)

Sparse matrix Expanded out to matrix of Doubles

Cell array of structures Record array

Cell array of non-structures Vector or matrix of types converted
from the types of the elements
5-49

5 Directives and Built-in Functions

5-5
Other value types are not currently supported.

As an example, this statement uses the FEVAL built-in function to call MATLAB
to take the sine of the input argument.

%assign result = FEVAL("sin", 3.14159)

Variables (identifiers) can take on the following constant values. Note the
suffix on the value one.

Note The suffix controls the Target Language Compiler type obtained from
the constant.

Cell array of structures and
non-structures

Conversion not supported

Structure Record

Object Conversion not supported

Constant Form TLC Type

1.0 "Real"

1.0[F/f] "Real32"

1 "Number"

1[U|u] "Unsigned"

1.0i "Complex"

1[Ui|ui] "UnsignedGaussian"

1i "Gaussian"

1.0[Fi|fi] "Complex32"

More Conversions (Continued)

MATLAB Type TLC Type
0

Compiler Directives
This table shows Target Language Compiler constants and their equivalent
MATLAB values.

TLC Reserved Constants
For double precision values, the following are defined for infinite and
not-a-number IEEE values

rtInf, inf, rtMinusInf, -inf, rtNaN, nan

For single-precision values, these constants apply:

rtInfF, InfF, rtMinusInfF, rtNaNF, NaNF

Their corresponding version when complex are

rtInfi, infi, rtMinusInfi, -infi, rtNaNi (for doubles)
rtInfFi, InfFi, rtMinusInfFi, rtNaNFi, NaNFi (for singles)

For integer values, the following are defined:

INT8MIN, INT8MAX, INT16MIN, INT16MAX, INT32MIN, INT32MAX, UINT8MAX,
UINT16MAX, UINT32MAX, INTMAX, INTMIN, UINTMAX

Identifier Definition
To define or change identifiers (TLC variables), use the directive

%assign [::]expression = constant-expression

TLC Constant(s) Equivalent MATLAB Value

rtInf, Inf, inf +inf

rtMinusInf -inf

rtNan, NaN, nan nan

rtInfi, Infi, infi inf*i

rtMinusInfi -inf*i

rtNaNi, NaNi, nani nan*i
5-51

5 Directives and Built-in Functions

5-5
This directive introduces new identifiers (variables) or changes the values of
existing ones. The left side can be a qualified reference to a variable using the
. and [] operators, or it can be a single element of a vector or matrix. In the
case of the matrix, only the single element is changed by the assignment.

The %assign directive inserts new identifiers into the local function scope (if
any), file function scope (if any), generate file scope (if any), or into the global
scope. Identifiers introduced into the function scope are not available within
functions being called, and are removed upon return from the function.
Identifiers inserted into the global scope are persistent. Existing identifiers can
be changed by completely respecifying them. The constant expressions can
include any legal identifiers from the .rtw files. You can use %undef to delete
identifiers in the same way that you use it to remove macros.

Within the scope of a function, variable assignments always create new local
variables unless you use the :: scope resolution operator. For example, given
a local variable foo and a global variable foo

%function …
…
%assign foo = 3
…
%endfunction

In this example, the assignment always creates a variable foo local to the
function that will disappear when the function exits. Note that foo is created
even if a global foo already exists.

In order to create or change values in the global scope, you must use the scope
resolution operator (::) to disambiguate, as in

%function …
%assign foo = 3
%assign ::foo = foo
…
%endfunction

The scope resolution operator (::) forces the compiler to assign to the global
foo, or to change its existing value to 3.
2

Compiler Directives
Note It is an error to change a value from the Real-Time Workshop file
without qualifying it with the scope. This example does not generate an error:

%assign CompiledModel.name = "newname" %% No error

This example generates an error:

%with CompiledModel
%assign name = "newname" %% Error

%endwith

Creating Records
Use the %createrecord directive to build new records in the current scope. For
example, if you want to create a new record called Rec that contains two items
(e.g., Name "Name" and Type "t"), use

%createrecord Rec { Name "Name"; Type "t" }

Adding Records
Use the %addtorecord directive to add new records to existing records. For
example, if you have a record called Rec1 that contains a record called Rec2,
and you want to add an additional Rec2 to it, use

%addtorecord Rec1 Rec2 { Name "Name1"; Type "t1" }
5-53

5 Directives and Built-in Functions

5-5
This figure shows the result of adding the record to the existing one.

If you want to access the new record, you can use

%assign myname = Rec1.Rec2[1].Name

In this same example, if you want to add two records to the existing record, use

%addtorecord Rec1 Rec2 { Name "Name1"; Type "t1" }
%addtorecord Rec1 Rec2 { Name "Name2"; Type "t2" }

Rec1 {
 Rec2 {

Name"Name0"
Type"t0"

 }
 Rec2 {

Name"Name1"
Type"t1"

 }
.
.

}

New Record

Existing Record
4

Compiler Directives
This produces

Adding Parameters to an Existing Record
You can use the %assign directive to add a new parameter to an existing
record. For example,

%addtorecord Block[Idx] N 500 /% Adds N with value 500 to Block %/
%assign myn = Block[Idx].N /% Gets the value 500 %/

adds a new parameter, N, at the end of an existing block with the name and
current value of an existing variable as shown in this figure. It returns the
block value.

Rec1 {
 Rec2 {

Name"Name0"
Type"t0"

 }
 Rec2 {

Name"Name1"
Type"t1"

 }
 Rec2 {

Name"Name2"
Type"t2"

 }
.
.

}

First New Record

Existing Record

Second New Record

Block {
.
.
.
N 500

}
New Parameter
5-55

5 Directives and Built-in Functions

5-5
Variable Scoping
This section discusses how the Target Language Compiler resolves references
to variables (including records).

Scope, in this document, has two related meanings. First, scope is an attribute
of a variable that defines its visibility and persistence. For example, a variable
defined within the body of a function is visible only within that function, and it
persists only as long as that function is executing. Such a variable has function
(or local) scope. Each TLC variable has one (and only one) of the scopes
described in “Scopes” below.

The term scope also refers to a collection, or pool, of variables that have the
same scope. At any point in the execution of a TLC program, several scopes
may exist. For example, during execution of a function, a function scope (the
pool of variables local to the function) exists. In all cases, a global scope (the
pool of global variables) would also exist.

To resolve variable references, TLC maintains a search list of current scopes
and searches them in a well-defined sequence. The search sequence is
described in “How TLC Resolves Variable References” on page 5-61.

Dynamic scoping refers to the process by which TLC creates and deallocates
variables and the scopes in which they exist. For example, variables in a
function scope exist only while the defining function executes.

Scopes
The following sections describe the possible scopes that a TLC variable can
have.

Global Scope. By default, TLC variables have global scope. Global variables are
visible to, and can be referenced by, code anywhere in a TLC program. Global
variables persist throughout the execution of the TLC program. Global
variables are said to belong to the global pool.

Note in particular that the CompiledModel record of the model.rtw file has
global scope. Therefore, you can access this structure from any of your TLC
functions or files.

You can use the scope resolution operator (::) to explicitly reference or create
global variables from within a function. See “The Scope Resolution Operator”
on page 5-61 for examples.
6

Compiler Directives
Note that you can use the %undef directive to free up memory used by global
variables.

File Scope. Variables with file scope are visible only within the file in which they
are created. To limit the scope of variables in this way, use the %filescope
directive anywhere in the defining file.

In the following code fragment, the variables fs1 and fs2 have file scope. Note
that the %filescope directive does not have to be positioned before the
statements that create the variables:

%assign fs1 = 1
%filescope
%assign fs2 = 3

Variables whose scope is limited by %filescope go out of scope when execution
of the file containing them completes. This lets you free up memory allocated
to such variables.

Function (Local) Scope. Variables defined within the body of a function have
function scope. That is, they are visible within and local to the defining
function. For example, in the following code fragment, the variable localv is
local to the function foo. The variable x is global:

%assign x = 3

%function foo(arg)
%assign localv = 1
%return x + localv

%endfunction

A local variable can have the same name as a global variable. To refer, within
a function, to identically-named local and global variables, you must use the
scope resolution operator (::) to disambiguate the variable references. See
“The Scope Resolution Operator” on page 5-61 for examples.

Note Functions themselves (as opposed to the variables defined within
functions) have global scope. There is one exception: functions defined in
generate scope are local to that scope. See “Generate Scope” on page 5-58.
5-57

5 Directives and Built-in Functions

5-5
%with Scope. The %with directive adds a new scope, referred to as a %with scope,
to the current list of scopes. This directive makes it easier to refer to
block-scoped variables.

The structure of the %with directive is

%with expression
%endwith

For example, the directive

%with CompiledModel.System[sysidx]
...

%endwith

adds the CompiledModel.System[sysidx] scope to the search list. This scope
is searched before anything else. You can then refer to the system name simply
by

Name

instead of

CompiledModel.System[sysidx].Name

Generate Scope. Generate scope is a special scope used by certain built-in
functions that are designed to support code generation. These functions
dispatch function calls that are mapped to a specific record type. This
capability supports a type of polymorphism in which different record types are
associated with functions (analogous to methods) of the same name. Typically,
this feature is used to map Block records to functions that implement the
functionality of different block types.

Functions that employ generate scope include GENERATE, GENERATE_TYPE,
GENERATE_FUNCTION_EXISTS, and GENERATE_TYPE_FUNCTION_EXISTS (See
“GENERATE and GENERATE_TYPE Functions” on page 5-35). This section
will discuss generate scope using the GENERATE built-in function as an example.

The syntax of the GENERATE function is

GENERATE(blk,fn)

The first argument (blk) to GENERATE is a valid record name. The second
argument (fn) is the name of a function to be dispatched. When a function is
dispatched through a GENERATE call, TLC automatically adds blk to the list of
8

Compiler Directives
scopes that is searched when resolving variable references. Thus the record
(blk) is visible to the dispatched function, as if there were an implicit
%with <blk>... %endwith directive in the dispatched function.

In this context, the record (blk) is said to be in generate scope.

Three TLC files, demonstrating the use of generate scope, are listed below. The
file polymorph.tlc creates two records representing two hypothetical block
types, MyBlock and YourBlock. Each record type has an associated function
named aFunc. The block-specific implementations of aFunc are contained in the
files MyBlock.tlc and YourBlock.tlc.

Using GENERATE calls, polymorph.tlc dispatches to the appropriate function
for each block type. Notice that the aFunc implementations can refer to the
fields of MyBlock and YourBlock, because these records are in generate scope.

• The following listing is polymorph.tlc.

%% polymorph.tlc

%language "C"

%%create records used as scopes within the dispatched functions

%createrecord MyRecord { Type "MyBlock"; data 123 }
%createrecord YourRecord { Type "YourBlock"; theStuff 666 }

%% dispatch the functions thru the GENERATE call.

%% dispatch to MyBlock implementation
%<GENERATE(MyRecord, "aFunc")>

%% dispatch to YourBlock implementation
%<GENERATE(YourRecord, "aFunc")>

%% end of polymorph.tlc

• The following listing is MyBlock.tlc.

%%MyBlock.tlc

%implements "MyBlock" "C"
5-59

5 Directives and Built-in Functions

5-6
%% aFunc is invoked thru a GENERATE call in polymorph.tlc.
%% MyRecord is in generate scope in this function.
%% Therefore, fields of MyRecord can be referenced without
%% qualification

%function aFunc(r) Output
%selectfile STDOUT
The value of MyRecord.data is: %<data>
%closefile STDOUT
%endfunction

%%end of MyBlock.tlc

• The following listing is YourBlock.tlc.

%%YourBlock.tlc

%implements "YourBlock" "C"

%% aFunc is invoked thru a GENERATE call in polymorph.tlc.
%% YourRecord is in generate scope in this function.
%% Therefore, fields of YourRecord can be referenced without
%% qualification

%function aFunc(r) Output
%selectfile STDOUT
The value of YourRecord.theStuff is: %<theStuff>
%closefile STDOUT
%endfunction

%%end of YourBlock.tlc

The invocation and output of polymorph.tlc, as displayed on the MATLAB
console, are shown below:

tlc -v polymorph.tlc

The value of MyRecord.data is: 123
The value of YourRecord.theStuff is: 666
0

Compiler Directives
Note Functions defined in generate scope are local to that scope. This is an
exception to the general rule that functions have global scope. In the above
example, for instance, neither of the aFunc implementations has global scope.

The Scope Resolution Operator
The scope resolution operator (::) is used to indicate that the global scope
should be searched when looking up a variable reference. The scope resolution
operator is often used to change the value of global variables (or even create
global variables) from within functions.

By using the scope resolution operator, you can resolve ambiguities that arise
when a function references identically-named local and global variables. In the
following example, a global variable foo is created. In addition, the function
myfunc creates and initializes a local variable named foo. The function myfunc
explicitly references the global variable foo by using the scope resolution
operator.

%assign foo = 3 %% this variable has global scope
.
.
%function myfunc(arg)

%assign foo = 3 %% this variable has local scope
%assign ::foo = arg %% this changes the global variable foo

%endfunction

You can also use the scope resolution operator, within a function, to create
global variables. The following function creates and initializes a global
variable:

%function sideffect(arg)
%assign ::theglobal = arg %% this creates a global variable

%endfunction

How TLC Resolves Variable References
This section discusses how the Target Language Compiler searches the
existing scopes to resolve variable references.
5-61

5 Directives and Built-in Functions

5-6
Global Scope. In the simplest case, the Target Language Compiler resolves a
variable reference by searching the global pool (including the CompiledModel
structure).

%with Scope. You can modify the search list and search sequence by using the
%with directive. For example, when you add the following construct

%with CompiledModel.System[sysidx]
...

%endwith

the System[sysidx] scope is added to the search list. This scope is searched
first, as shown by this picture.

%with Scope Added to Search Sequence

This technique makes it simpler to access embedded definitions. Using the
%with construct (as in the previous example), you can refer to the system name
simply by

Name

instead of

CompiledModel.System[sysidx].Name

Global Pool
%assign a = …
%assign b = …
…

%with CompiledModel.
System[sysidx] 1

2

2

Compiler Directives
Function Scope. A function has its own scope. That scope is added to the
previously described search list, as shown in this diagram.

Scoping Rules Within Functions

For example, in the following code fragment:

% with CompiledModel.System[sysidx]
.
.
.

%assign a=foo(x,y)
.
.
.
%endwith
.
.
.
%function foo (a,b)
.
.
.

Global Pool
%assign a = …
%assign b = …
…

%with CompiledModel.

2

3

1

%function foo (x,y)

System[sysidx]
5-63

5 Directives and Built-in Functions

5-6
assign myvar=Name
.
.
.
%endfunction
.
.
.
%<foo(1,2)>

If Name is not defined in foo, the assignment will use the value of Name from the
previous scope, CompiledModel.System[SysIdx].Name.

In the case of nested functions, only the innermost nested function scope is
searched. In the diagram below, foo is called by callfoo. When resolving
variable references in foo, only the scope of foo is searched (together with
enclosing %with and global scopes.)
4

Compiler Directives
Nested File Scopes

Global Pool
%assign a = …
%assign b = …
…

%function callfoo

3

1

%function foo (x,y)

.

2
%with CompiledModel.
System[sysidx]

.
foo(9,10)
5-65

5 Directives and Built-in Functions

5-6
File Scope. File scopes are searched before the global scope, as shown in the
following diagram.

File Scopes Searched Before Global Scope

The rule for nested file scopes is similar to that for nested function scopes. In
the case of nested file scopes, only the innermost nested file scope is searched.

Target Language Functions
The target language function construct is

%function identifier (optional-arguments) [Output | void]
%return
%endfunction

Global Pool
%assign a = …
%assign b = …
…

%with CompiledModel.

2

4

1

%function foo (x,y)

System[sysidx]

3
%filescope
6

Compiler Directives
Functions in the target language are recursive and have their own local
variable space. Target language functions do not produce any output, unless
they explicitly use the %openfile, %selectfile, and %closefile directives, or
are output functions.

A function optionally returns a value with the %return directive. The returned
value can be any of the types defined in the table “Target Language Values”.

In this example, a function, name, returns x, if x and y are equal, and returns
z, if x and y are not equal:

%function name(x,y,z) void

%if x == y
%return x

%else
%return z

%endif

%endfunction

Function calls can appear in any context where variables are allowed.

All %with statements that are in effect when a function is called are available
to the function. Calls to other functions do not include the local scope of the
function, but do include any %with statements appearing within the function.

Assignments to variables within a function always create new, local variables
and can not change the value of global variables unless you use the scope
resolution operator (::).

By default, a function returns a value and does not produce any output. You
can override this behavior by specifying the Output and void modifiers on the
function declaration line, as in

%function foo() Output
…
%endfunction

In this case, the function continues to produce output to the currently open file,
if any, and is not required to return a value. You can use the void modifier to
indicate that the function does not return a value, and should not produce any
output, as in
5-67

5 Directives and Built-in Functions

5-6
%function foo() void
…
%endfunction

Variable Scoping Within Functions
Within a function, the left-hand member of any %assign statement defaults to
create a local variable. A new entry is created in the function’s block within the
scope chain; it does not affect any of the other entries. An example is shown in
Figure , Scoping Rules Within Functions, on page 5-63.

You can override this default behavior by using %assign with the scope
resolution operator (::).

When you introduce new scopes within a function using %with, these new
scopes are used during nested function calls, but the local scope for the function
is not searched. Also, if a %with is included within a function, its associated
scope is carried with any nested function call, as shown in Figure , Scoping
Rules When Using %with Within a Function, on page 5-69.
8

Compiler Directives
Scoping Rules When Using %with Within a Function

Global Pool
%assign a = …
%assign b = …

%with CompiledModel.
System[Sysidx]

%function foo (x,y)

%with Name[Nmidx]

%function bar ()

%assign a=<variableX>

5

4

3

2

1

5-69

5 Directives and Built-in Functions

5-7
%return
The %return statement closes all %with statements appearing within the
current function. In this example, the %with statement is automatically closed
when the %return statement is encountered, removing the scope from the list
of searched scopes:

%function foo(s)
 %with s
 %return(name)
 %endwith
%endfunction

The %return statement does not require a value. You can use %return to return
from a function with no return value.
0

Command Line Arguments
Command Line Arguments
To call the Target Language Compiler, use

tlc [switch1 expr1 switch2 expr2 …] filename.tlc

This table lists the switches you can use with the Target Language Compiler.
Order makes no difference. Note that if you specify a switch more than once,
the last one takes precedence.

Target Language Compiler Switches

Switch Meaning

-r filename Reads a database file (such as a .rtw file). Repeat this
option multiple times to load multiple database files
into the Target Language Compiler. Omit this option
for target language programs that do not depend on the
database.

-v[number] Sets the internal verbosity level to <number>. Omitting
this option sets the verbosity level to 1.

-Ipath Adds the specified directory to the list of paths to be
searched for TLC files.

-Opath Specifies that all output produced should be placed in
the designated directory, including files opened with
%openfile and %closefile, and .log files created in
debug mode. To place files in the current directory, use
-O (use the capital letter O, not zero).

-m[number] Specifies the maximum number of errors to report is
<number>. If no -m argument appears on the command
line, it defaults to reporting the first five errors. If the
<number> argument is omitted on this option, 1 is
assumed.

-x0 Parse TLC file only (do not execute).

-lint Performs some simple checks for performance and
deprecated features.
5-71

5 Directives and Built-in Functions

5-7
As an example, the command line

tlc -r Demo.rtw -v grt.tlc

specifies that Demo.rtw should be read and used to process grt.tlc in verbose
mode.

-p[number] Print a dot ('.') indicating progress for every <number>
of TLC primitive operations executed.

-d[a|c|f|n|o] Invoke the TLC's debug mode.

-da makes TLC execute any %assert directives.
However, when building from within RTW, this flag is
not needed and will be ignored, as it is superseded by
the Enable TLC Assertions check box on the TLC
debugging section of the Real-Time Workshop pane.

-dc invokes the TLC command line debugger.

-df filename invokes the TLC debugger and runs a
debugger script as specified by filename. A debugger
script is a text file containing valid debugger commands.
TLC searches only the current working directory for the
script file.

-dn will cause TLC to produce log files indicating
which lines were and were not hit during compilation.

-do will disable the TLC debugging behavior.

-dr Check for cyclic records (records that reference each
other, a source of memory leaks)

-a[ident]=expr Specifies an initial value, <expr>, for the identifier,
<ident>, for some parameters; equivalent to the
%assign command.

Target Language Compiler Switches (Continued)

Switch Meaning
2

Command Line Arguments
Filenames and Search Paths
All target files have the .tlc extension. By default, block-level files have the
same name as the Type of the block in which they appear. You can override the
search path for target files with your own local versions. The Target Language
Compiler finds all target files along this path. If you specify additional search
paths with the -I switch of the tlc command or via the %addincludepath
directive, they will be searched after the current working directory, and in the
order in which you specify them.
5-73

5 Directives and Built-in Functions

5-7
4

6

Debugging TLC Files

The Target Language Compiler debugger is a command line debugger that enables you to identify
problems in executing TLC code. The following sections describe the facilities provided and provide
examples of use.

About the TLC Debugger (p. 6-2) Introducing the TLC debugging facility

Using the TLC Debugger (p. 6-3) Enabling tracing and coverage, and command summary

TLC Coverage (p. 6-9) Determining what TLC statements are executed

TLC Profiler (p. 6-13) Measuring the execution time of each TLC function

6 Debugging TLC Files

6-2
About the TLC Debugger
The TLC debugger helps you identify programming errors in your TLC code.
Using the debugger, you can

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

The TLC debugger has a command line interface and uses commands similar
to standard debugging tools such as dbx or gdb.

Tips for Debugging TLC Code
Here are a few tips that will help you to debug your TLC code:

1 To see the full TLC call stack, place the following statement in your TLC
code before the line that is pointed to by the error message. This will be
helpful in narrowing down your problem.

%setcommandswitch "-v1"

2 To trace the value of a variable in a function, place the following statement
in your TLC file:

%trace This is in my function %<variable>

Your message will appear when the Target Language Compiler is run with
the -v command switch, but will be silent otherwise. You may use %warning
instead of %trace to print variables, but you will need to remove or comment
out such lines after you are through debugging.

3 Use the TLC coverage log files to ensure that most parts of your code have
been exercised.

Using the TLC Debugger
Using the TLC Debugger
This section describes the basic procedures and commands for using the TLC
debugger to identify bugs and potential problkems in your TLC files. If you are
simplly modifying TLC files and not changingyour model, be sure to read the
section “Avoiding Rebuilding Models When Debugging TLC” on page 6-4.

Invoking the Debugger

1 To configure TLC for debugging via the Configuration Parameters dialog,
select Debug under Real-Time Workshop.

2 Select Retain .rtw file in the RTW process subpane. This ensures that the
model.rtw file is not deleted after code generation.

3 Select Start TLC debugger when generating code in the TLC process
subpane to invoke the TLC debugger when starting the code generation
process. The dialog box looks like this.
6-3

6 Debugging TLC Files

6-4
Selecting Start TLC debugger when generating code is equivalent to
adding -dc to the RTW System target file field in the Real-Time Workshop
pane of the Configuration Parameters dialog box.

4 Apply your changes and click Build to start code generation. This stops at
the first line of executed TLC code, breaks into the TLC command line
debugger, and displays the following prompt.

TLC_DEBUG>

You can now set breakpoints, explore the contents of Real-Time Workshop
files, and explore variables in your TLC file using print, which, or whos.

An alternate way to invoke the TLC debugger is from the MATLAB prompt.
(This assumes you retained the model.rtw file in the project directory.) To
avoid making mistakes, we recommend copying the tlc command output by
Real-Time Workshop to the MATLAB command window, and issue it after
appending -dc to that command line.

A complete list of command line switches for the TLC debugger is found in the
table “Target Language Compiler Switches” in Chapter 5.

Avoiding Rebuilding Models When Debugging TLC
If you are debugging TLC scripts for code generation, you can speed up the
edit-generate-inspect cycle when you generate code for models that are not
changing between iterations. You can bypass rebuilding the model (the RTW
process) if all you are doing is editing TLC files used to generate code.

To use this feature, select the Retain .rtw file option in the Real-time
Workshop/Debug pane. The next time you build, the model.rtw file will be
saved in your build directory, along with two other files:

• runtlccmd.m
• tlccmd.mat

From that point on, you can invoke the Target Language Compiler outside the
build process and with the proper parameters by executing runtlccmd.m. The
MAT-file is used to store the parameters used by the M-file in issuing the TLC
command. You can rebuild the model as required, and this time-saving option
will remain available as long as you continue to retain your model.rtw file each
time you build.

Using the TLC Debugger
TLC Debugger Command Summary
The table “TLC Debugger Commands” on page 6-6 summarizes the TLC
debugger commands.

To obtain more detailed help on individual commands,use the syntax

help command

from within the TLC debugger, as in this example:

TLC-DEBUG> help clear

You can abbreviate any TLC debugger command to its shortest unique form.
For example,

TLC-DEBUG> break warning

can be abbreviated to

TLC-DEBUG> br warning

To view a complete list of TLC debugger commands, type help at the
TLC-DEBUG> prompt.
6-5

6 Debugging TLC Files

6-6
TLC Debugger Commands

Command Description

assign variable=value Change a variable in the running
program.

break ["filename":]line|error|warning|trace|
function

Set a breakpoint. See also
“%breakpoint Directive” on page 6-8

clear [breakpoint#|all] Remove a breakpoint.

condition [breakpoint#] [expression] Attach a condition to a breakpoint

continue ["filename":]line|function Continue from a breakpoint.

disable [breakpoint#] Disable a breakpoint.

down [n] Move down the stack.

enable [breakpoint#] Enable a breakpoint.

finish Break after completing the current
function

help [command] Obtain help for a command.

ignore [breakpoint#]count Set the ignore count of a breakpoint

iostack Display contents of I/O stack

list start[,end] List lines from the file from start to end.

loadstate "filename" Load debugger breakpoint state from a
file

next Single step without going into functions.

Using the TLC Debugger
print expression Print the value of a TLC expression. To
print a record, you must specify a fully
qualified “scope” such as
CompiledModel.System[0].Block[0].

quit Quit the TLC debugger. You can also exit
the debugger by typing Ctrl + C at the
prompt.

run "filename" Run a batch file of command line
debugger commands

savestate "filename" Save debugger breakpoint state to a file

status Display a list of active breakpoints.

step Step into.

stop ["filename":]line|error|warning|trace|
function

Set a breakpoint (same as break).

tbreak ["filename":]line|function Set a temporary breakpoint

thread [n] Change the active thread to thread #n (0
is the main program’s thread number).

threads List the currently active TLC execution
threads.

tstop ["filename":]line|function Set a temporary breakpoint

up [n] Move up the stack.

where Show the currently active execution
chains.

which name Look up the name and display what
scope it comes from.

whos [::|expression] List the variables in the given scope.

TLC Debugger Commands

Command Description
6-7

6 Debugging TLC Files

6-8
%breakpoint Directive
As an alternative to the break command, you can embed breakpoints at any
point in a TLC file by adding the directive:

%breakpoint

Usage Notes
When using break or stop, use

• error to break or stop on error

• warn to break or stop on warning

• trace to break or stop on trace

For example, if you need to break in foo.tlc on error, use

TLC_DEBUG> break "foo.tlc":error

When using clear, get the status of breakpoints using status and clear
specific breakpoints. For example:

TLC-DEBUG> break "foo.tlc":46
TLC-DEBUG> break "foo.tlc":25
TLC-DEBUG> status
Breakpoints:
[1] break File: foo.tlc Line: 46
[2] break File: foo.tlc Line: 25
TLC-DEBUG> clear 2

In this example, clear 2 clears the second breakpoint.

TLC Coverage
TLC Coverage
The example in the last section used the debugger to detect a problem in one
section of the TLC file. Since it is conceivable that a test model does not cover
all possible cases, there is a technique that traces the untested cases, the TLC
coverage option.

Using the TLC Coverage Option
The TLC coverage option provides an easier way to ascertain that the different
code parts (not paths) in your code are exercised. To initiate TLC coverage
generation, select Start TLC coverage when generating code from the TLC
process subpane of the Real-Time Workshop/Debug pane of the
Configuration Parameters dialog box:

When you initiate TLC coverage, the Target Language Compiler produces a
.log file for every target file (*.tlc) used. These .log files are placed in the
Real-Time Workshop created project directory for the model. Each .log file
contains usage (count) information regarding how many times it encounters
each line during execution. Each line begins withthe number of times it is
encountered, followed by a colon, followed by the code.
6-9

6 Debugging TLC Files

6-1
Example .log File
Here is a log file that results from generating code the sfcndemo_sdotproduct
demo model, located in matlabroot/toolbox/simulink/simdemos. This model
inlines the sdotproduct S-function in TLC. The TLC file that implements the
S-function is located in matlabroot/toolbox/simulink/blocks/tlc_c/. The
.log file for sdotproduct.tlc is sdotproduct.log, which is placed in your
build directory. The contents of sdotproduct.log are:

Source: \\bat07\anightly\matlab\toolbox\simulink\blocks\tlc_c\sdotproduct.tlc
0: %% $RCSfile: sdotproduct.ttlc,v $
 0: %% File : sdotproduct.tlc generated from sdotproduct.ttlc revsion 1.6
 0: %% $Date: 2002/04/10 18:17:59 $
 0: %%
 0: %% Murali Yeddanapudi, 27-May-1998
 0: %% Copyright 1990-2002 The MathWorks, Inc.
 0: %%
 0: %% Abstract:
 0: %% Dot product block target file.
 1:
 1:
 1: %implements sdotproduct "C"
 1:
 1:
 0: %% Function: FcnThriftedComplexMultiply
==
 0: %% Abstract:
 0: %% This function multiplies two numbers in the complex plane. If any of
 0: %% the input arguments is only real, then the complex part is passed in
 0: %% as "".
 0: %%
 1: %function FcnThriftedComplexConjMultiply(ar,ai,br,bi,cr,ci,op) void
 2: %openfile buffer
 0: %%
 0: %% Compute Cr = Ar * Br + Ai * Bi
 0: %%
 2: %assign rhsStr = "%<ar> * %
"
 2: %if !LibIsEqual(ai, "") && !LibIsEqual(bi, "")
 0: %assign rhsStr = rhsStr + " + %<ai> * %<bi>"
 0: %endif
 2: %<cr> %<op> %<rhsStr>;
 0: %%
 0: %% Compute Ci = Ar * Bi - Ai * Br
 0: %%
 2: %if !LibIsEqual(ci, "")
 0: %assign rhsStr = "0.0"
 0: %if !LibIsEqual(bi, "")
 0: %assign rhsStr = "%<ar> * %<bi>"
 0: %endif
 0: %if !LibIsEqual(ai, "")
 0: %assign rhsStr = rhsStr + " - %<ai> * %
"
0

TLC Coverage
 0: %endif
 0: %<ci> %<op> %<rhsStr>;
 0: %endif
 0: %%
 2: %closefile buffer
 2: %return buffer
 0: %endfunction %% FcnThriftedComplexMultiply
 1:
 1:
 0: %% Function: Outputs
===
 0: %% Abstract:
 0: %% Y = U0' * U1, where U0' is the complex conjugate transpose of U0
 0: %%
 1: %function Outputs(block, system) Output
 1: %assign sfcnName = ParamSettings.FunctionName
 1: /* %<Type> Block (%<sfcnName>): %<LibParentMaskBlockName(block)> */
 0: %%
 1: %assign u0re = LibBlockInputSignal(0, "", "", "%<tRealPart>0")
 1: %assign u0im = LibBlockInputSignal(0, "", "", "%<tImagPart>0")
 1: %assign u1re = LibBlockInputSignal(1, "", "", "%<tRealPart>0")
 1: %assign u1im = LibBlockInputSignal(1, "", "", "%<tImagPart>0")
 0: %%
 1: %assign yre = LibBlockOutputSignal(0, "", "", "%<tRealPart>0")
 1: %assign yim = LibBlockOutputSignal(0, "", "", "%<tImagPart>0")
 0: %%
 0: %% Need to declare a temporary variable for u1re when the output is
 0: %% being over-written and u0im is non-zero
 1: %assign outputOverWritesInput = ...
 0: ((LibBlockInputSignalBufferDstPort(0) == 0) || ...
 0: (LibBlockInputSignalBufferDstPort(1) == 0)) && ...
 0: (LibBlockInputSignalIsComplex(0) && LibBlockInputSignalIsComplex(1))
 0: %%
 1: %if outputOverWritesInput
 0: {
 0: %assign dtName = LibBlockOutputSignalDataTypeName(0, tRealPart)
 0: %<dtName> tmpVar;
 0: \
 0: %assign tmpVar = "tmpVar"
 0: %else
 1: %assign tmpVar = yre
 0: %endif
 0: %%
 1: %<FcnThriftedComplexConjMultiply(u0re, u0im, u1re, u1im, tmpVar, yim, "=")>\
 0: %%
 1: %assign rollVars = ["U", "Y"]
 1: %assign rollRegion = LibGetRollRegions1(RollRegions)
 0: %%
 1: %if LibIsEqual(rollRegion, [])
 0: %if outputOverWritesInput
 0: %<yre> = tmpVar;
 0: %endif
 0: %else
6-11

6 Debugging TLC Files

6-1
 0: %% Continue with dot product for non-scalar case
 1: %roll idx = rollRegion, lcv = RollThreshold, block, "Roller", rollVars
 1: %assign u0re = LibBlockInputSignal(0,"",lcv,"%<tRealPart>%<idx>")
 1: %assign u0im = LibBlockInputSignal(0,"",lcv,"%<tImagPart>%<idx>")
 1: %assign u1re = LibBlockInputSignal(1,"",lcv,"%<tRealPart>%<idx>")
 1: %assign u1im = LibBlockInputSignal(1,"",lcv,"%<tImagPart>%<idx>")
 0: %%
 1: %assign yre = LibBlockOutputSignal(0,"",lcv,"%<tRealPart>%<idx>")
 1: %assign yim = LibBlockOutputSignal(0,"",lcv,"%<tImagPart>%<idx>")
 0: %%
 1: %<FcnThriftedComplexConjMultiply(u0re, u0im, u1re, u1im, yre, yim, "+=")>\
 0: %endroll
 0: %endif
 1: %if outputOverWritesInput
 0: }
 0: %endif
 1:
 0: %endfunction
 1:
 0: %% [EOF] sdotproduct.tlc

Analyzing the Results
This structure makes it easy to identify branches not taken and to develop new
tests that can exercise unused portions of the target files.

Looking at the sdotproduct.log file, you can see that the code has not been
used to assign default values to parameters (e.g., the begining part of the code
for function FcnThriftedComplexConjMultiply). Using this log as a
reference and creating models that exercise unexecuted lines, you can make
sure that your code is more robust.
2

TLC Profiler
TLC Profiler
The TLC profiler collects timing statistics for TLC code. It collects execution
time for functions, scripts, macros, and built-in functions. These results become
the basis of HTML reports that are identical in format to MATLAB profiler
reports. By analyzing the report, you can identify bottlenecks in your code that
make code generation take longer.

Using the Profiler
To access the profiler, select Profile TLC from the TLC debugging category of
the Real-Time Workshop pane of the Configuration Parameters dialog box.
Apply your changes and click the Build (or Generate code) button.

At the end of the TLC process, the HTML summary and related files are
created. A progress bar paces the report generation:
6-13

6 Debugging TLC Files

6-1
The profile report is generated into the Real-Time Workshop build directory.
To open the report, cd to the build directory and open the file model.html,
opening it in a browser window. Here is sample of a TLC profiling report:
4

TLC Profiler
Analyzing the Report
The created report is fairly self-explanatory. Some points to note are

• Functions are sorted in descending order of their execution time.

• Self-time is the time spent in the function alone and does not include the time
spent in subfunctions called by the function

• Functions are hyperlinks that take you to the details related to that specific
function.

A situation where the profiler report may be helpful is when you have inlined
S-functions in your model. You can use the profiler to compare time spent in
specific user-written or Lib functions, and then modify your TLC code
accordingly.

Nonexecutable Directives
TLC considers the following directives to be nonexecutable lines. Therefore,
these directives are not counted in TLC Profiler reports:

• %filescope
• %else
• %endif
• %endforeach
• %endfor
• %endroll
• %endwith
• %body
• %endbody
• %endfunction
• %endswitch
• %default
• any type of comment (%% or /% stuff %/)

Improving Performance
Analyzing the profiler results also gives you an overview of which functions are
used more often or are more expensive. Then, you can either improve those
functions that were written by you, or try alternative methods to improve code
generation speed. Two points to consider are
6-15

6 Debugging TLC Files

6-1
• Reduce usage of EXISTS. Performing an EXISTS on a field is more costly than
comparing the field to a value. When possible, create an inert default value
for a field. Then, instead of doing an EXISTS on the entity, compare it against
the default value.

• Reduce the use of one line functions when they are not really needed. One
line functions might be a bottleneck for code generation speed. When
readability is not greatly impacted, consider expanding out the function.
6

7

Inlining S-Functions

To wrap or to inline, that is the question. Once you have decided, the following sections explain how
to go about it, using the timestwo S-function as a running example. Inlining works almost identically
for C, M-file and Fortran S-functions.

Introduction (p. 7-2) Finding information about writing S-functions to be used
for code generation

Writing Block Target Files to Inline
S-Functions (p. 7-3)

Differences between fully-inlined and wrapped
S-functions

Inlining C MEX S-Functions (p. 7-5) Calls made by C S-functions and how to handle them

Inlining M-File S-Functions (p. 7-18) Accelerating M-file S-function performance

Inlining Fortran (F-MEX) S-Functions
(p. 7-20)

How the timestwo function coded in Fortran is handled

TLC Coding Conventions (p. 7-24) Make your TLC code more robust by observing case
conventions and using library functions

Block Target File Methods (p. 7-29) Descriptions of the functions needed to emit block code

Loop Rolling (p. 7-37) An example that handles multiple inputs

Error Reporting (p. 7-40) Help in finding the source of trouble

7 Inlining S-Functions

7-2
Introduction
Writing S-functions that will be included in code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder involves requirements
that go beyond writing S-functions used only for simulation in Simulink. Before
you proceed to inline an S-function you should make sure that it meets these
requirements and will function as you expect it to. You therefore might want to
read Chapter 10, “Writing S-Functions for Real-Time Workshop” in the
Real-Time Workshop documentation if you have not already done so. If your
S-function is multirate, you also might want to refer to Chapter 8, “Models with
Multiple Sample Rates” in the Real-Time Workshop documentation, and the
section “Rate Grouping Compliance and Compatibility Issues” in the
Real-Time Workshop Embedded Coder documentation.

Writing Block Target Files to Inline S-Functions
Writing Block Target Files to Inline S-Functions
With C MEX S-functions, all targets except ERT will support calling the
original C MEX code if the source code (.c file) is available when Real-Time
Workshop enters its build phase. For S-functions that are in Fortran or .m, you
must inline them in order to have complete code generation for Simulink
models that contain them. Additionally, once you have determined that you
will inline an S-function, you must decide to either make it fully inlined or
wrappered.

Fully Inlined S-Functions
The block target file for a fully inlined S-function is a self-contained definition
of how to inline the block’s functionality directly into the various portions of the
generated code — start code, output code, etc. This approach is most beneficial
when there are many modes and data types supported for algorithms that are
relatively small or when the code size is not significant.

Function-Based or Wrappered Code Generation
When the physical size of the code needed for a block becomes too large for
inlining, the block target file is written to gather inputs, outputs, and
parameters, and make a call to a function that you write to perform the block
functionality. This has an advantage in generated code size when the code in
the function is large or there are many instances of this block in a model. Of
course, the overhead of the function call must be considered when weighing the
option of fully inlining the block algorithm or generating function calls.

If a decision has been made to go with function-based code generation, there
are two more options to consider:

• Write all the function(s) once, put them in .c file(s) and have the TLC code’s
BlockTypeSetup method specify external references to your support
functions. Use LibAddToModelSources for names of the modules containing
the supporting functions. This approach is usually done using one function
per file to get the smallest executable possible.

• Write a more sophisticated TLC file that in addition to the methods such as
Start and Outputs will also conditionally generate more functions in
separate code generation buffers to be written to a separate .c file that
contains customized versions of functions (data types, widths, algorithms,
7-3

7 Inlining S-Functions

7-4
etc.), but only the functions needed by this model instead of all possible
functions.

Either approach can produce optimal code. The first option can result in
hundreds of files if your S-function supports many data types, signal widths
and algorithm choices. The second approach is more difficult to write, but
results in a more maintainable code generation library and the code can be
every bit as tight as the first approach.

For further information on wrapping, see “Wrapper Inlined S-Function
Example” on page 2-10 and “Writing Wrapper S-Functions” in the Simulink
Writing S-Functions documentation.

Inlining C MEX S-Functions
Inlining C MEX S-Functions
When a Simulink model contains an S-function and a corresponding TLC block
target file exists for that S-function, Real-Time Workshop inlines the
S-function. Inlining an S-function can produce more efficient code by
eliminating the S-function Application Program Interface (API) layer from the
generated code.

For S-functions that can perform a variety of tasks, inlining them gives you the
opportunity to generate code only for the current mode of operation set for each
instance of the block. As an example of this, if an S-function accepts an
arbitrary signal width and loops through each element of the signal, you would
want to generate inlined code that has loops when the signal has two or more
elements, but generates a simple nonlooped calculation when the signal has
just one element.

Level 1 C MEX S-functions (written to an older form of the S-function API) that
are not inlined will cause the generated code to make calls to all of these seven
functions, even if the routine is empty for the particular S-function.

Level 2 C MEX S-functions (i.e., those written to the current S-function API)
that are not inlined make calls to the above functions with the following
exceptions:

Function Purpose

mdlInitializeSizes Initialize the sizes array.

mdlInitializeSampleTimes Initialize the sample times array.

mdlInitializeConditions Initialize the states.

mdlOutputs Compute the outputs.

mdlUpdate Update discrete states.

mdlDerivatives Compute the derivatives of continuous
states.

mdlTerminate Clean up when the simulation terminates.
7-5

7 Inlining S-Functions

7-6
• mdlInitializeConditions is only called if MDL_INITIALIZE_CONDITIONS is
declared with #define.

• mdlStart is called only if MDL_START is declared with #define.

• mdlUpdate is called only if MDL_UPDATE is declared with #define.

• mdlDerivatives is called only if MDL_DERIVATIVES is declared with #define.

By inlining an S-function, you can eliminate the calls to these possibly empty
functions in the simulation loop. This can greatly improve the efficiency of the
generated code. To inline an S-function called sfunc_name, you create a custom
S-function block target file called sfunc_name.tlc and place it in the same
directory as the S-function’s MEX-file. Then, at build time, the target file is
executed instead of setting up function calls into the S-function’s .c file. The
S-function target file “inlines” the S-function by directing the Target Language
Compiler to insert only the statements defined in the target file.

In general, inlining an S-function is especially useful when

• The time required to execute the contents of the S-function is small in
comparison to the overhead required to call the S-function.

• Certain S-function routines are empty (e.g., mdlUpdate).

• The behavior of the S-function changes between simulation and code
generation. For example, device driver I/O S-functions may read from the
MATLAB workspace during simulation, but read from an actual hardware
address in the generated code.

S-Function Parameters
An S-function can write two different types of parameters into the model.rtw
file for Target Language Compiler files to access:

• Parameter settings: These correspond to non-tunable parameters (typically
set from checkboxes and popups on a masked S-function) that are written via
the mdlRTW method of the S-function using ssWriteRTWParamSettings. The
S-function's TLC implementation file can then directly access the values of
these parameter settings from the SFcnParamSettings record in the block.

• Tunable parameters: This class of parameters can be accessed when they are
registered as run-time parameters within the S-function. Note that such
tunable parameters are automatically written out to the model.rtw file.
Within the TLC file for the S-function, you can access run-time parameters

Inlining C MEX S-Functions
and their attributes using the LibBlockParameter library function and its
variants.

See the Run-Time Parameters section of the Writing S-functions in the
Simulink documentation for more information on how to create and use
run-time parameters. Also see the sfcndemo_runtime demo in the S-function
demos for examples of how to create and use the two classes of parameters. The
demo source files, which you can inspect and adapt, are:

• toolbox/simulink/blocks/tlc_c/sfun_runtime1.c

• toolbox/simulink/blocks/tlc_c/sfun_runtime1.tlc

• toolbox/simulink/blocks/tlc_c/sfun_runtime2.c

• toolbox/simulink/blocks/tlc_c/sfun_runtime2.tlc

• toolbox/simulink/blocks/tlc_c/sfun_runtime3.c

• toolbox/simulink/blocks/tlc_c/sfun_runtime3.tlc

A Complete Example
Suppose you have a simple S-function that mimics the Gain block with one
input, one output, and a scalar gain. That is, y = u * p. If the Simulink block’s
name is foo and the name of the Level 2 S-function is foogain, the C MEX
S-function must contain this code:

#define S_FUNCTION_NAME foogain
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"
#define GAIN mxGetPr(ssGetSFcnParam(S,0))[0]

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;
 ssSetInputPortWidth (S, 0, 1);
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S, 1)) return;
 ssSetOutputPortWidth (S, 0, 1);

7-7

7 Inlining S-Functions

7-8
 ssSetNumSFcnParams(S, 1);
 ssSetNumSampleTimes(S, 0);
 ssSetNumIWork(S, 0);
 ssSetNumRWork(S, 0);
 ssSetNumPWork(S, 0);
}

static void
mdlOutputs(SimStruct *S, int_T tid)
{
 real_T *y = ssGetOutputPortRealSignal(S, 0);
 const InputRealPtrsType u = ssGetInputPortRealSignalPtrs(S, 0);

 y[0] = (*u)[0] * GAIN;
}

static void
mdlInitializeSampleTimes(SimStruct *S){}

static void
mdlTerminate(SimStruct *S) {}

#define MDL_RTW /* Change to #undef to remove function */
#if defined(MDL_RTW)&&(defined(MATLAB_MEX_FILE)||defined(NRT))
static void
mdlRTW (SimStruct *S)
{
 if (!ssWriteRTWParameters(S, 1,SSWRITE_VALUE_VECT,"Gain","",
 mxGetPr(ssGetSFcnParam(S,0)),1))
{

 return;
 }
}
#endif

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

Inlining C MEX S-Functions
The following two sections show the difference in the code the Real-Time
Workshop generates for model.c containing noninlined and inlined versions of
S-function foogain. The model contained no other Simulink blocks.

For information about how to generate code with the Real-Time Workshop, see
the Real-Time Workshop documentation.

Comparison of Noninlined and Inlined Versions of model.c
Without a TLC file to define the S-function specifics, the Real-Time Workshop
must call the MEX-file S-function through the S-function API. The code below
is the model.c file for the noninlined S-function (i.e., no corresponding TLC
file).

Noninlined S-Function.

/*
 * model.c
.
.
.
*/
real_T untitled_RGND = 0.0; /* real_T ground */
/* Start the model */
void MdlStart(void)
{
 /* (no start code required) */
}
/* Compute block outputs */
void MdlOutputs(int_T tid)
{
 /* Level2 S-Function Block: <Root>/S-Function (foogain) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnOutputs(rts, tid);
 }
}
/* Perform model update */
void MdlUpdate(int_T tid)
{
 /* (no update code required) */
}

7-9

7 Inlining S-Functions

7-1
/* Terminate function */
void MdlTerminate(void)
{
 /* Level2 S-Function Block: <Root>/S-Function (foogain) */
 {
 SimStruct *rts = ssGetSFunction(rtS, 0);
 sfcnTerminate(rts);
 }
}
#include "model_reg.h"
/* [EOF] model.c */

Inlined S-Function.

This code is model.c with the foogain S-function fully inlined:

/*
 * model.c
.
.
.
*/
/* Start the model */
void MdlStart(void)
{
 /* (no start code required) */
}

/* Compute block outputs */
void MdlOutputs(int_T tid)

 /* S-Function block: <Root>/S-Function */
/* NOTE: There are no calls to the S-function API in the inlined

version of model.c. */
 rtB.S_Function = 0.0 * rtP.S_Function_Gain;
}

/* Perform model update */
void MdlUpdate(int_T tid)
0

Inlining C MEX S-Functions
{
 /* (no update code required) */
}

/* Terminate function */
void MdlTerminate(void)
{
 /* (no terminate code required) */
}

#include "model_reg.h"

/* [EOF] model.c */

By including this simple target file for this S-function block, the model.c code
is generated as

rtB.S_Function = 0.0 * rtP.S_Function_Gain;

Including a TLC file drastically decreased the code size and increased the
execution efficiency of the generated code. These notes highlight some
information about the TLC code and the generated output:

• The TLC directive %implements is required by all block target files, and must
be the first executable statement in the block target file. This directive
guarantees that the Target Language Compiler does not execute an
inappropriate target file for S-function foogain.

• The input to foo is rtGROUND (a Real-Time Workshop global equal to 0.0)
since foo is the only block in the model and its input is unconnected.

• Including a TLC file for foogain eliminated the need for an S-function
registration segment for foogain. This significantly reduces code size.

• The TLC code will inline the gain parameter when Real-Time Workshop is
configured to inline parameter values. For example, if the S-function
parameter is specified as 2.5 in the S-function dialog box, the TLC Outputs
function generates
rtB.foo = input * 2.5;

• Use the %generatefile directive if your operating system has a filename
size restriction and the name of the S-function is foosfunction (that exceeds
the limit). In this case, you would include the following statement in the
7-11

7 Inlining S-Functions

7-1
system target file (anywhere prior to a reference to this S-function’s block
target file).

%generatefile foosfunction "foosfunc.tlc"

This statement tells the Target Language Compiler to open foosfunc.tlc
instead of foosfunction.tlc.

Comparison of Noninlined and Inlined Versions of model_reg.h
Inlining a Level 2 S-function significantly reduces the size of the model_reg.h
code. Model registration functions are lengthy; much of the code has been
eliminated in this example. The code below highlights the difference between
the noninlined and inlined versions of model_reg.h; inlining eliminates all this
code:

/*
 * model_reg.h
 *
.
.
.
*/
/* Normal model initialization code independent of

S-functions */

/* child S-Function registration */
 ssSetNumSFunctions(rtS, 1);

 /* register each child */
 {
 static SimStruct childSFunctions[1];
 static SimStruct *childSFunctionPtrs[1];

 (void)memset((char_T *)&childSFunctions[0], 0,
sizeof(childSFunctions));

 ssSetSFunctions(rtS, &childSFunctionPtrs[0]);
 {
 int_T i;

 for(i = 0; i < 1; i++) {
2

Inlining C MEX S-Functions
 ssSetSFunction(rtS, i, &childSFunctions[i]);
 }
 }

 /* Level2 S-Function Block: untitled/<Root>/S-Function
(foogain) */

 {
 extern void foogain(SimStruct *rts);
 SimStruct *rts = ssGetSFunction(rtS, 0);

 /* timing info */
 static time_T sfcnPeriod[1];
 static time_T sfcnOffset[1];
 static int_T sfcnTsMap[1];

 {
 int_T i;

 for(i = 0; i < 1; i++) {
 sfcnPeriod[i] = sfcnOffset[i] = 0.0;
 }
 }
 ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
 ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
 ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);
 ssSetMdlInfoPtr(rts, ssGetMdlInfoPtr(rtS));

 /* inputs */
 {
 static struct _ssPortInputs inputPortInfo[1];

 _ssSetNumInputPorts(rts, 1);
 ssSetPortInfoForInputs(rts, &inputPortInfo[0]);

 /* port 0 */
 {
 static real_T const *sfcnUPtrs[1];

 sfcnUPtrs[0] = &untitled_RGND;
 ssSetInputPortWidth(rts, 0, 1);
7-13

7 Inlining S-Functions

7-1
 ssSetInputPortSignalPtrs(rts, 0,
(InputPtrsType)&sfcnUPtrs[0]);

 }
 }

 /* outputs */
 {
 static struct _ssPortOutputs outputPortInfo[1];
 _ssSetNumOutputPorts(rts, 1);
 ssSetPortInfoForOutputs(rts, &outputPortInfo[0]);
 ssSetOutputPortWidth(rts, 0, 1);
 ssSetOutputPortSignal(rts, 0, &rtB.S_Function);
 }

 /* path info */
 ssSetModelName(rts, "S-Function");
 ssSetPath(rts, "untitled/S-Function");
 ssSetParentSS(rts, rtS);
 ssSetRootSS(rts, ssGetRootSS(rtS));
 ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

 /* parameters */
 {
 static mxArray const *sfcnParams[1];

 ssSetSFcnParamsCount(rts, 1);
 ssSetSFcnParamsPtr(rts, &sfcnParams[0]);

 ssSetSFcnParam(rts, 0, &rtP.S_Function_P1Size[0]);
 }

 /* registration */
 foogain(rts);

 sfcnInitializeSizes(rts);
 sfcnInitializeSampleTimes(rts);

 /* adjust sample time */
 ssSetSampleTime(rts, 0, 0.2);
 ssSetOffsetTime(rts, 0, 0.0);
4

Inlining C MEX S-Functions
 sfcnTsMap[0] = 0;

 /* Update the InputPortReusable and BufferDstPort flags for
each input port */

 ssSetInputPortReusable(rts, 0, 0);
 ssSetInputPortBufferDstPort(rts, 0, -1);

 /* Update the OutputPortReusable flag of each output port */
 }
 }

A TLC File to Inline S-Function foogain
To avoid unnecessary calls to the S-function and to generate the minimum code
required for the S-function, the following TLC file, foogain.tlc, is provided as
an example.

%implements "foogain" "C"

%function Outputs (block, system) Output
 /* %<Type> block: %<Name> */
 %%
 %assign y = LibBlockOutputSignal (0, "", "", 0)
 %assign u = LibBlockInputSignal (0, "", "", 0)
 %assign p = LibBlockParameter (Gain, "", "", 0)
 %<y> = %<u> * %<p>;

%endfunction

Managing Block Instance Data with an Eye Toward Code Generation
Instance data is extra data or working memory that is unique to each instance
of a block in a Simulink model. This does not include parameter or state data
(which is stored in the model parameter and state vectors, respectively), but
rather is used for purposes such as caching intermediate results or derived
representations of parameters and modes. One example of instance data is the
buffer used by a transport delay block.

Allocating and using memory on an instance by instance basis can be done
several ways in a Level 2 S-function: via ssSetUserData, work vectors (e.g.,
ssSetRWork, ssSetIWork), or data-typed work vectors known as DWorks. For the
smallest effort in writing both the S-function and block target file and for
7-15

7 Inlining S-Functions

7-1
automatic conformance to both static and malloc instance data on targets such
as grt and grt_malloc, The MathWorks recommends using data-typed work
vectors when writing S-functions with instance data, accessed with the
ssSetDWork and ssGetDWork methods.

The advantages are twofold. In the first place, writing the S-function is more
straightforward in that memory allocations and frees are handled for you by
Simulink. Secondly, the DWork vectors are written to the model.rtw file for you
automatically, including the DWork name, data type, and size. This makes
writing the block target file a snap, since you have no TLC code to write for
allocating and freeing the DWork memory — Real-Time Workshop takes care of
this for you.

Additionally, if you want to bundle up groups of DWorks into structures for
passing to functions, you can populate the structure with pointers to DWork
arrays in both your S-function’s mdlStart function and the block target file’s
Start method, achieving consistency between the S-function and the generated
code’s handling of data.

Finally, using DWorks makes it straightforward to create a specific version of
code (data types, scalar vs. vectorized, etc.) for each block instance that
matches the implementation in the S-function, i.e., both implementations use
DWorks in the same way so that the inlined code can be used with the Simulink
Accelerator without any changes to the C MEX S-function or the block target
file.

Using Inlined Code With the Simulink Accelerator
By default, the Simulink Accelerator will call your C MEX S-function as part
of an accelerated model simulation. If you want to instead have the accelerator
inline your S-function before running the accelerated model, tell the
accelerator to use your block target file to inline the S-function with the
SS_OPTION_USE_TLC_WITH_ACCELERATOR flag in the call to ssSetOptions() in
the mdlInitializeSizes function of that S-function.

Note that memory and work vector size and usage must be the same for the
TLC generated code and the C MEX S-function, or the Simulink Accelerator
will not be able to execute the inlined code properly. This is because the C MEX
S-function is called to initialize the block and its work vectors, calling the
mdlInitializeSizes, mdlInitializeConditions, mdlCheckParameters,
mdlProcessParameters, and mdlStart functions. In the case of constant signal
6

Inlining C MEX S-Functions
propagation, mdlOutputs is called from the C MEX S-function during the
initialization phase of model execution.

During the time-stepping phase of accelerated model execution, the code
generated by the Output and Update block TLC methods will execute, plus the
Derivatives and zero-crossing methods if they exist. The Start method of the
block target file are not used in generating code for an accelerated model.
7-17

7 Inlining S-Functions

7-1
Inlining M-File S-Functions
All of the functionality of M-file S-functions can be inlined in the generated
code. Writing a block target file for an M-file S-function is essentially identical
to the process for a C MEX S-function.

Note that while you can fully inline an M-file S-function to achieve top
performance—even with Simulink Accelerator—the MATLAB Math Library is
not included with Real-Time Workshop, so any high-level MATLAB commands
and functions you use in the M-file S-function must be written by hand in the
block target file.

A quick example will illustrate the equivalence of C MEX and M-file
S-functions for code generation. The M-file S-function timestwo.m is
equivalent to the C MEX S-function timestwo. In fact, the TLC file for the C
MEX S-function timestwo will work for the M-file S-function timestwo.m as
well! Since TLC only requires the ‘root’ name of the S-function and not its type,
it is independent of the type of S-function. In the case of timestwo, one line
determines what the TLC file will be used for

%implements "timestwo" "C"

To try this out for yourself, copy file timestwo.m from
matlabroot/toolbox/simulink/blocks/ to a temporary directory, then copy
the file timestwo.tlc from matlabroot/toolbox/simulink/blocks/tlc_c/ to
the same temporary directory. In MATLAB, cd to the temporary directory and
make a Simulink model with an S-function block that calls timestwo. Since the
MATLAB search path will find timestwo.m in the current directory before
finding the C MEX S-function timestwo in the matlabpath, Simulink will use
the M-file S-function for simulation. Verify which S-function will be used by
typing the MATLAB command

which timestwo

The answer you see will be the M-file S-function timestwo.m in the temporary
directory. Here is the sample model.
8

Inlining M-File S-Functions
Upon generating code, you will find that the timestwo.tlc file was used to
inline the M-file S-function with code that looks like this (with an input signal
width of 5 in this example):

/* S-Function Block: <Root>/m-file S-Function */
 /* Multiply input by two */
 {
 int_T i1;
 const real_T *u0 = &rtB.Gain[0];
 real_T *y0 = &rtB.m_file_S_Function[0];

 for (i1=0; i1 < 5; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }
 }

As expected, each of the inputs, u0[i1], is multiplied by 2.0 to form the output
value. The Outputs method in the block target file used to generate this code
was

%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll

%endfunction

Alter these temporary copies of the M-file S-function and the TLC file to see
how they interact — start out by just changing the comments in the TLC file
and see it show up in the generated code, then work up to algorithmic changes.
7-19

7 Inlining S-Functions

7-2
Inlining Fortran (F-MEX) S-Functions
The capabilities of Fortran MEX S-functions can be fully inlined using a TLC
block target file. With a simple F MEX S-function version of the ubiquitous
“timestwo” function, this interface can be illustrated. Here is the sample
Fortran S-function code:

C
C FTIMESTWO.FOR
C $Revision: 1.1$
C
C A sample FORTRAN representation of a
C timestwo S-function.
C Copyright 1990-2000 The MathWorks, Inc.
C
C===
C Function: SIZES
C
C Abstract:
C Set the size vector.
C
C SIZES returns a vector which determines model
C characteristics. This vector contains the
C sizes of the state vector and other
C parameters. More precisely,
C SIZE(1) number of continuous states
C SIZE(2) number of discrete states
C SIZE(3) number of outputs
C SIZE(4) number of inputs
C SIZE(5) number of discontinuous roots in
C the system
C SIZE(6) set to 1 if the system has direct
C feedthrough of its inputs,
C otherwise 0
C
C===
C
 SUBROUTINE SIZES(SIZE)
C .. Array arguments ..
 INTEGER*4 SIZE(*)
0

Inlining Fortran (F-MEX) S-Functions
C .. Parameters ..
 INTEGER*4 NSIZES
 PARAMETER (NSIZES=6)

 SIZE(1) = 0
 SIZE(2) = 0
 SIZE(3) = 1
 SIZE(4) = 1
 SIZE(5) = 0
 SIZE(6) = 1

 RETURN
 END

C
C===
C
C Function: OUTPUT
C
C Abstract:
C Perform output calculations for continuous
C signals.
C
C===
C .. Parameters ..
 SUBROUTINE OUTPUT(T, X, U, Y)
 REAL*8 T
 REAL*8 X(*), U(*), Y(*)

 Y(1) = U(1) * 2.0

 RETURN
 END

C
C===
C
C Stubs for unused functions.
C
C===
7-21

7 Inlining S-Functions

7-2
 SUBROUTINE INITCOND(X0)
 REAL*8 X0(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DERIVS(T, X, U, DX)
 REAL*8 T, X(*), U(*), DX(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DSTATES(T, X, U, XNEW)
 REAL*8 T, X(*), U(*), XNEW(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE DOUTPUT(T, X, U, Y)
 REAL*8 T, X(*), U(*), Y(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE TSAMPL(T, X, U, TS, OFFSET)
 REAL*8 T,TS,OFFSET,X(*),U(*)
C --- Nothing to do.
 RETURN
 END

 SUBROUTINE SINGUL(T, X, U, SING)
 REAL*8 T, X(*), U(*), SING(*)
C --- Nothing to do.
 RETURN
 END

Copy the above code into file ftimestwo.for in a convenient working directory.

Putting this into an S-function block in a simple model will illustrate the
interface for inlining the S-function. Once your Fortran MEX environment is
2

Inlining Fortran (F-MEX) S-Functions
set up, prepare the code for use by compiling the S-function in a working
directory along with the file simulink.for from matlabroot/simulink/src/.
This is done with the mex command at the MATLAB command prompt:

mex -fortran ftimestwo.for simulink.for

And now reference this block from a simple Simulink model set with a fixed
step solver and the grt target.

The TLC code needed to inline this block is a modified form of the now familiar
timestwo.tlc. In your working directory, create a file named ftimestwo.tlc
and put this code into it.

%implements "ftimestwo" "C"

%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 /* Multiply input by two */
 %assign rollVars = ["U", "Y"]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...
"Roller", rollVars
 %<LibBlockOutputSignal(0, "", lcv, idx)> = \
 %<LibBlockInputSignal(0, "", lcv, idx)> * 2.0;
 %endroll
%endfunction

Now you can generate code for the ftimestwo Fortran MEX S-function. The
resulting code fragment specific to ftimestwo is

/* S-Function Block: <Root>/F-MEX S-Function */
 /* Multiply input by two */
 rtB.F_MEX_S_Function = rtB.Gain * 2.0;
7-23

7 Inlining S-Functions

7-2
TLC Coding Conventions
These guidelines help ensure that the programming style in each target file is
consistent, and hence, more easily modifiable.

Begin Identifiers with Uppercase Letters
All identifiers in the Real-Time Workshop file begin with an uppercase letter.
For example,

NumModelInputs 1
NumModelOutputs 2
NumNonVirtBlocksInModel 42
DirectFeedthrough yes
NumContStates 10

Block records that contain a Name identifier should start the name with an
uppercase letter since the Name identifier is often promoted into the parent
scope. For example, a block may contain

Block {
:
:

RWork [4, 0]
:

NumRWorkDefines 4
RWorkDefine {

Name "TimeStampA"
Width 1
StartIndex 0

}
}

Since the Name identifier within the RWorkDefine record is promoted to PrevT
in its parent scope, it must start with an uppercase letter. The promotion of the
Name identifier into the parent block scope is currently done for the Parameter,
RWorkDefine, IWorkDefine, and PWorkDefine block records.

The Target Language Compiler assignment directive (%assign) generates a
warning if you assign a value to an “unqualified” Real-Time Workshop
identifier. For example,

%assign TID = 1
4

TLC Coding Conventions
produces an error because TID identifier is not qualified by Block. However, a
“qualified” assignment does not generate a warning:

%assign Block.TID = 1

does not generate a warning because the Target Language Compiler assumes
the programmer is intentionally modifying an identifier since the assignment
contains a qualifier.

Begin Global Variable Assignments with Uppercase Letters
Global TLC variable assignments should start with uppercase letters. A global
variable is any variable declared in a system target file (grt.tlc, mdlwide.tlc,
mdlhdr.tlc, mdlbody.tlc, mdlreg.tlc, or mdlparam.tlc), or within a function
that uses the :: operator. In some sense, global assignments have the same
scope as Real-Time Workshop variables. An example of a global TLC variable
defined in mdlwide.tlc is

%assign InlineParameters = 1

An example of a global reference in a function is

%function foo() void
 %assign ::GlobalIdx = ::GlobalIdx + 1
%endfunction

Begin Local Variable Assignments with Lowercase Letters
Local TLC variable assignments should start with lowercase letters. A local
TLC variable is a variable assigned inside a function. For example,

%assign numBlockStates = ContStates[0]

Begin Functions Declared in block.tlc files with Fcn
When you declare a function inside a block.tlc file, it should start with Fcn.
For example:

%function FcnMyBlockFunc(...)

Note Functions declared inside a system file are global; functions declared
inside a block file are local.
7-25

7 Inlining S-Functions

7-2
Do Not Hard Code Variables Defined in commonsetup.tlc
Since the Real-Time Workshop tracks use of variables and generates code
based on usage, you should use access routines instead of directly using a
variable. For example, you should not use the following in your TLC file:

x = %<tInf>;

You should use

x = %<LibRealNonFinite(inf)>;

Similarly, instead of using %<tTID>, use %<LibTID()>. For a complete list of
functions, see “TLC Function Library Reference” on page 8-1.

All Real-Time Workshop global variables start with rt and all Real-Time
Workshop global functions start with rt_.

Avoid naming global variables in your run-time interface modules that start
with rt or rt_ since they may conflict with Real-Time Workshop global
variables and functions. These TLC variables are declared in
commonsetup.tlc.

This convention creates consistent variables throughout the target files. For
example, the Gain block contains the following Outputs function.

%% Function: Outputs ==
%% Abstract:
%% Y = U * K
%%
%function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%assign rollVars = ["U", "Y", "P"]
%roll sigIdx = RollRegions, lcv = RollThreshold, block,...

"Roller", rollVars
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign k = LibBlockParameter(Gain, "", lcv, sigIdx)
%<y> = %<u> * %<k>;
%endroll

%endfunction

 Note c

 Note a
 Note e

 Notes d, f

 Note b
6

TLC Coding Conventions
Notes about this TLC code:

a The code section for each block begins with a comment specifying the
block type and name.

b Include a blank line immediately after the end of the function in order to
create consistent spacing between blocks in the output code.

c Try to stay within 80 columns per line for the function banner. You might
set up an 80 column comment line at the top of each function. As an
example, see constant.tlc.

d For consistency, use the variables sysIdx and blkIdx for system index
and block index, respectively.

e Use the variable rollVars when using the %roll construct.

f When naming loop control variables, use sigIdx and lcv when looping
over RollRegions and xidx and xlcv when looping over the states.

Example: Output function in gain.tlc

%roll sigIdx = RollRegions, lcv = RollThreshold, ...
block, "Roller", rollVars

Example: InitializeConditions function in linblock.tlc

%roll xidx = [0:nStates-1], xlcv = RollThreshold,...
block, "Roller", rollVars

Conditional Inclusion in Library Files
The Target Language Compiler function library files are conditionally included
via guard code so that they may be referenced via %include multiple times
without worrying if they have previously been included. It is recommended
that you follow this same practice for any TLC library files that you yourself
create.

The convention is to use a variable with the same name as the base filename,
uppercased and with underscores attached at both ends. So, a file named
customlib.tlc should have the variable _CUSTOMLIB_ guarding it.

As an example, the main Target Language Compiler function library,
funclib.tlc, contains this TLC code to prevent multiple inclusion:

%if EXISTS("_FUNCLIB_") == 0
7-27

7 Inlining S-Functions

7-2
%assign _FUNCLIB_ = 1
.
.
.

%endif %% _FUNCLIB_

Code Defensively
As the code your TLC generates could be used in referenced models in
unpredictable contexts, do not assume too much about namespaces. For
example, when writing TLC code for a block and you are adding any typedef,
guard it with if/def, as the following example illustrates:

%openfile tmpBuff
 #ifndef RESOLUTION_TYPEDEF

 typedef enum { LO_RES, HI_RES } Resolution;
 typedef struct { Resolution res; int8_T value; } Data;

 #define RESOLUTION_TYPEDEF
 #endif /* RESOLUTION_TYPEDEF */
 %closefile tmpBuff

 %<LibCacheTypedefs(tmpBuff)>;
8

Block Target File Methods
Block Target File Methods
Each block has a target file that determines what code should be generated for
the block. The code can vary depending on the exact parameters of the block or
the types of connections to it (e.g., wide vs. scalar input).

Within each block target file, block functions specify the code to be output for
the block in the model’s or subsystem’s start function, output function, update
function, and so on.

Block Target File Mapping
The block target file mapping specifies which target file should be used to
generate code for which block type. This mapping resides in
matlabroot/rtw/c/tlc/mw/genmap.tlc. All the TLC files listed are located in
directories within matlabroot/rtw/c/tlc for C.

Block Functions
The functions declared inside each of the block target files are called by the
system target files. In these tables, block refers to a Simulink block name (e.g.,
gain for the Gain block) and system refers to the subsystem in which the block
resides. The first table lists the two functions that are used for preprocessing
and setup. Neither of these functions outputs any generated code:

• BlockInstanceSetup(block, system)

• BlockTypeSetup(block, system)

The following functions all generate executable code that Real-Time Workshop
places appropriately:

• Enable(block, system)
• Disable(block, system)
• Start(block, system)
• InitializeConditions(block, system)
• Outputs(block, system)
• Update(block, system)
• Derivatives(block, system)
• Terminate(block, system)
7-29

7 Inlining S-Functions

7-3
In object-oriented programming terms, these functions are polymorphic in
nature since each block target file contains the same functions. The Target
Language Compiler dynamically determines at run-time which block function
to execute depending on the block’s type. That is, the system file only specifies
that the Outputs function, for example, is to be executed. The particular
Outputs function is determined by the Target Language Compiler depending
on the block’s type.

To write a block target file, use these polymorphic block functions combined
with the Target Language Compiler library functions. For a complete list of the
Target Language Compiler library functions, see “TLC Function Library
Reference” on page 8-1.

BlockInstanceSetup(block, system)
The BlockInstanceSetup function executes for all the blocks that have this
function defined in their target files in a model. For example, if there are 10
From Workspace blocks in a model, then the BlockInstanceSetup function in
fromwks.tlc executes 10 times, once for each From Workspace block instance.
Use BlockInstanceSetup to generate code for each instance of a given block
type.

See the Reference chapter for available utility processing functions to call from
inside this block function. See matlabroot/rtw/c/tlc/blocks/lookup2d.tlc
for an example of the BlockInstanceSetup function.

Syntax. BlockInstanceSetup(block, system) void
block = Reference to a Simulink block

system = Reference to a nonvirtual Simulink subsystem

This example uses BlockInstanceSetup:

%function BlockInstanceSetup(block, system) void
%if (block.InMask == "yes")
 %assign blockName = LibParentMaskBlockName(block)
 %else
 %assign blockName = LibGetFormattedBlockPath(block)
 %endif
 %if (CodeFormat == “Embedded-C”)
 %if !(ParamSettings.ColZeroTechnique == "NormalInterp" && ...
 ParamSettings.RowZeroTechnique == "NormalInterp")
 %selectfile STDOUT
0

Block Target File Methods
Note: Removing repeated zero values from the X and Y axes will
produce more efficient code for block: %<blockName>. To locate
this block, type

open_system('%<blockName>')

at the MATLAB command prompt.

 %selectfile NULL_FILE
 %endif
 %endif

%endfunction

BlockTypeSetup(block, system)
BlockTypeSetup executes once per block type before code generation begins.
That is, if there are 10 Lookup Table blocks in the model, the BlockTypeSetup
function in look_up.tlc is only called one time. Use this function to perform
general work for all blocks of a given type.

See ““TLC Function Library Reference” on page 8-1” for a list of relevant
functions to call from inside this block function. See look_up.tlc for an
example of the BlockTypeSetup function.

Syntax. BlockTypeSetup(block, system) void
block = Reference to a Simulink block
system = Reference to a nonvirtual Simulink subsystem

As an example, given the S-function foo requiring a #define and two function
declarations in the header file, you could define the following function:

%function BlockTypeSetup(block, system) void

%% Place a #define in the model's header file

%openfile buffer
#define A2D_CHANNEL 0

%closefile buffer

%<LibCacheDefine(buffer)>
7-31

7 Inlining S-Functions

7-3
%% Place function prototypes in the model's header file

%openfile buffer
void start_a2d(void);
void reset_a2d(void);

%closefile buffer

%<LibCacheFunctionPrototype(buffer)>

%endfunction

The remaining block functions execute once for each block in the model.

Enable(block, system)
Nonvirtual subsystem Enable functions are created whenever a Simulink
subsystem contains a block with an Enable function. Including the Enable
function in a block’s target file places the block’s specific enable code into this
subsystem Enable function. See sin_wave.tlc for an example of the Enable
function.

%% Function: Enable ==
%% Abstract:
%% Subsystem Enable code is only required for the discrete form
%% of the Sine Block. Setting the boolean to TRUE causes the
%% Output function to re-sync its last values of cos(wt) and
%% sin(wt).
%%
%function Enable(block, system) Output
 %if LibIsDiscrete(TID)
 /* %<Type> Block: %<Name> */
 %<LibBlockIWork(SystemEnable, ““, ““, 0)> = (int_T) TRUE;

 %endif
%endfunction

Disable(block, system)
Nonvirtual subsystem Disable functions are created whenever a Simulink
subsystem contains a block with a Disable function. Including the Disable
function in a block’s target file places the block’s specific disable code into this
2

Block Target File Methods
subsystem Disable function. See outport.tlc in
matlabroot/rtw/c/tlc/blocks for an example of the Disable function.

Start(block, system)
Include a Start function to place code into the Start function. The code inside
the Start function executes once and only once. Typically, you include a Start
function to execute code once at the beginning of the simulation (e.g., initialize
values in the work vectors; see backlash.tlc) or code that does not need to be
reexecuted when the subsystem in which it resides enables. See constant.tlc
for an example of the Start function:

%% Function: Start ==
%% Abstract:
%% Set the output to the constant parameter value if the block
%% output is visible in the model’s start function scope, i.e.,
%% it is in the global rtB structure.
%%
%function Start(block, system) Output
 %if LibBlockOutputSignalIsInBlockIO(0)
 /* %<Type> Block: %<Name> */
 %assign rollVars = [“Y”, “P”]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...

“Roller”, rollVars
 %assign yr = LibBlockOutputSignal(0,””, lcv, ...

“%<tRealPart>%<idx>”)
 %assign pr = LibBlockParameter(Value, ““, lcv, ...

“%<tRealPart>%<idx>”)
 %<yr> = %<pr>;
 %if LibBlockOutputSignalIsComplex(0)

%assign yi = LibBlockOutputSignal(0, ““, lcv, ...
“%<tImagPart>%<idx>”)

%assign pi = LibBlockParameter(Value, ““, lcv, ...
“%<tImagPart>%<idx>”)

%<yi> = %<pi>;
 %endif
 %endroll

 %endif
%endfunction %% Start
7-33

7 Inlining S-Functions

7-3
InitializeConditions(block, system)
TLC code that is generated from the block’s InitializeConditions function
ends up in one of two places. A nonvirtual subsystem contains an Initialize
function when it is configured to reset states on enable. In this case, the TLC
code generated by this block function is placed in the subsystem Initialize
function and the start function will call this subsystem Initialize function.
If, however, the Simulink block resides in the root system or in a nonvirtual
subsystem that does not require an Initialize function, the code generated
from this block function is placed directly (inlined) into the start function.

There is a subtle difference between the block functions Start and
InitializeConditions. Typically, you include a Start function to execute code
that does not need to re-execute when the subsystem in which it resides
enables. You include an InitializeConditions function to execute code that
must reexecute when the subsystem in which it resides enables. See delay.tlc
for an example of the InitializeConditions function. The following code is an
example from ratelim.tlc:

%% Function: InitializeConditions =============================
%%
%% Abstract:
%% Invalidate the stored output and input in rwork[1 ...
%% 2*blockWidth] by setting the time stamp (stored in
%% rwork[0]) to rtInf.
%%
%function InitializeConditions(block, system) Output
 /* %<Type> Block: %<Name> */
 %<LibBlockRWork(PrevT, ““, ““, 0)> = %<LibRealNonFinite(inf)>;

%endfunction %% InitializeConditions

Outputs(block, system)
A block should generally include an Outputs function. The TLC code generated
by a block’s Outputs function is placed in one of two places. The code is placed
directly in the model’s Outputs function if the block does not reside in a
nonvirtual subsystem and in a subsystem’s Outputs function if the block
resides in a nonvirtual subsystem. See absval.tlc for an example of the
Outputs function:
4

Block Target File Methods
%% Function: Outputs ==
%% Abstract:
%% Y[i] = fabs(U[i]) if U[i] is real or
%% Y[i] = sqrt(U[i].re^2 + U[i].im^2) if U[i] is complex.
%%
%function Outputs(block, system) Output
 /* %<Type> Block: %<Name> */
 %%
 %assign inputIsComplex = LibBlockInputSignalIsComplex(0)
 %assign RT_SQUARE = “RT_SQUARE”
 %%
 %assign rollVars = [“U”, “Y”]
 %if inputIsComplex
 %roll sigIdx = RollRegions, lcv = RollThreshold, ...

block, “Roller”, rollVars
 %%
 %assign ur = LibBlockInputSignal(0, ““, lcv, ...

“%<tRealPart>%<sigIdx>”)
 %assign ui = LibBlockInputSignal(0, ““, lcv, ...

“%<tImagPart>%<sigIdx>”)
 %%
 %assign y = LibBlockOutputSignal(0, ““, lcv, sigIdx)
 %<y> = sqrt(%<RT_SQUARE>(%<ur>) + %<RT_SQUARE>(%<ui>));
 %endroll
 %else
 %roll sigIdx = RollRegions, lcv = RollThreshold, ...

block, “Roller”, rollVars
 %assign u = LibBlockInputSignal (0, ““, lcv, sigIdx)
 %assign y = LibBlockOutputSignal(0, ““, lcv, sigIdx)
 %<y> = fabs(%<u>);
 %endroll
 %endif

%endfunction

Note Zero-crossing reset code is placed in the Outputs function.
7-35

7 Inlining S-Functions

7-3
Update(block, system)
Include an Update function if the block has code that needs to be updated at
each major time step. Code generated from this function is either placed into
the model’s or the subsystem’s Update function, depending on whether or not
the block resides in a nonvirtual subsystem. See delay.tlc for an example of
the Update function.

%% Function: Update ==
%% Abstract:
%% X[i] = U[i]
%%
%function Update(block, system) Output
 /* %<Type> Block: %<Name> */
 %assign stateLoc = (DiscStates[0]) ? “Xd” : “DWork”
 %assign rollVars = [“U”, %<stateLoc>]
 %roll idx = RollRegions, lcv = RollThreshold, block, ...

“Roller”, rollVars
 %assign u = LibBlockInputSignal(0, ““, lcv, idx)
 %assign x = FcnGetState(““,lcv,idx, ““)
 %<x> = %<u>;
 %endroll

%endfunction %% Update

FcnGetState is a function defined locally in delay.tlc.

Derivatives(block, system)
Include a Derivatives function when generating code to compute the block’s
continuous states. Code generated from this function is either placed into the
model’s or the subsystem’s Derivatives function, depending on whether or not
the block resides in a nonvirtual subsystem. See integrat.tlc for an example
of the Derivatives function.

Terminate(block, system)
Include a Terminate function to place any code into MdlTerminate.
User-defined S-function target files can use this function to save data, free
memory, reset hardware on the target, and so on. See tofile.tlc for an
example of the Terminate function.
6

Loop Rolling
Loop Rolling
One of the optimization features of the Target Language Compiler is the
intrinsic support for loop rolling. Based on a specified threshold, code
generation for looping operations can be unrolled or left as a loop (rolled).

Coupled with loop rolling is the concept of noncontiguous signals. Consider the
following model.

The input to the timestwo S-function comes from two arrays located at two
different memory locations, one for the output of source1 and one for the
output of block source2. This is because of a Simulink optimization feature
that makes the Mux block virtual, meaning that there is no code explicitly
generated for the mux and thus no processor cycles spent evaluating it (i.e., it
becomes a pure graphical convenience for the block diagram). So this is
represented in the model.rtw file in this case as

Block {
 Type "S-Function"
 MaskType "S-function: timestwo"
 BlockIdx [0, 0, 2]
 SL_BlockIdx 2
 GrSrc [0, 1]
 ExprCommentInfo {

SysIdxList[]
BlkIdxList[]
PortIdxList[]

 }
 ExprCommentSrcIdx {

SysIdx -1
BlkIdx -1
PortIdx -1
7-37

7 Inlining S-Functions

7-3
 }
 Name "<Root>/timestwo C-MEX S-Function"
 SLName "<Root>/timestwo \nC-MEX S-Function"
 Identifier timestwoCMEXSFunction
 TID 0
 RollRegions [0:19, 20:49]
 NumDataInputPorts 1
 DataInputPort {

SignalSrc[b0@20, b1@30]
SignalOffset[0:19, 0:29]
Width 50
RollRegions[0:19, 20:49]

 }
 NumDataOutputPorts 1
 DataOutputPort {

SignalSrc[b2@50]
SignalOffset[0:49]
Width 50

 }
 Connections {

InputPortContiguous[no]
InputPortConnected[yes]
OutputPortConnected[yes]
OutputPortBeingMerged[no]
DirectSrcConn[no]
DirectDstConn[yes]
DataOutputPort {
 NumConnPoints 1
 ConnPoint {
 SrcSignal [0, 50]
 DstBlockAndPortEl [0, 4, 0, 0]
 }
}

}
.
.

From this snippet of the model.rtw file you can see that the block and input
port RollRegion entries are not just one number, but two groups of numbers.
8

Loop Rolling
This denotes two groupings in memory for the input signal. Looking at the
generated code, we see

/* S-Function Block: <Root>/timestwo C-MEX S-Function */
 /* Multiply input by two */
 {
 int_T i1;

 const real_T *u0 = &contig_sample_B.u[0];
 real_T *y0 = contig_sample_B.timestwoCMEXSFunction_m;

 for (i1=0; i1 < 20; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }

 u0 = &contig_sample_B.u_o[0];
 y0 = &contig_sample_B.timestwoCMEXSFunction_m[20];

 for (i1=0; i1 < 30; i1++) {
 y0[i1] = u0[i1] * 2.0;
 }
}

Notice that two loops are generated and in between them the input signal is
redirected from the first base address, &contig_sample_B.u[0], to the second
base address of the signals, &contig_sample_B.u_o[0]. If you do not want to
support this in your S-function or your generated code, you can use

ssSetInputPortRequiredContiguous(S, 1);

in the mdlInitializeSizes function to cause Simulink to implicitly generate
code that performs a buffering operation. This option uses both extra memory
and CPU cycles at runtime, but may be worth it if your algorithm performance
increases enough to offset the overhead of the buffering.

Loops are generated by using the %roll directive. See also %roll %endroll on
page 5-11 for the reference entry for %roll and %roll on page 5-31 for a section
describing the behavior of %roll.
7-39

7 Inlining S-Functions

7-4
Error Reporting
You may need to detect and report error conditions in your TLC code. Error
detection and reporting is needed most often in library functions. While rare,
it is also possible to encounter error conditions in block target file code. The
reason this is rare, but can occur if there is an unforeseen condition that the
S-function mdlCheckParameters function does not detect.

To report an error condition detected in your TLC code, use the
LibBlockReportError or LibBlockReportFatalError utility functions. Use of
these functions is fully documented in the Reference section. Here is an
example of using LibBlockReportError in the paramlib.tlc function
LibBlockParameter: to report the condition of an improper use of that function:

%if TYPE(param.Value) == "Matrix"
 %% exit if the parameter is a true matrix,
 %% i.e., has more than one row or columns.
 %if nRows > 1
 %assign errTxt = "Must access parameter %<param.Name> using "...
 "LibBlockMatrixParameter."
 %<LibBlockReportError([], errTxt)>
 %endif
 %endif

Browse through matlabroot/rtw/c/tlc for more examples of the use of
LibBlockReportError. Also, read further details in “TLC Error Handling” on
page A-1, which describes types of TLC errors and their interpretations.
0

8

TLC Function Library
Reference

This chapter provides a set of Target Language Compiler functions that are useful for inlining
S-functions. The TLC files contain many other library functions, but you should use only the
functions that are documented in these reference pages for development. Undocumented functions
may change significantly from release to release. A table of obsolete functions and their replacements
is shown in Obsolete Functions.

You can find examples using these functions in matlabroot/toolbox/simulink/blocks/tlc_c. The
corresponding MEX S-function source code is located in matlabroot/simulink/src. M-file
S-functions and the MEX-file executables (e.g., sfunction.dll) for matlabroot/simulink/src are
located in matlabroot/toolbox/simulink/blocks.

Obsolete Functions (p. 8-2) Deprecated functions and their replacements

Target Language Compiler Functions
(p. 8-4)

Function syntax, conventions, and common arguments

Input Signal Functions (p. 8-9) Functions that process and report on input signals

Output Signal Functions (p. 8-21) Functions that process and report on output signals

Parameter Functions (p. 8-26) Functions that process model parameters

Block State and Work Vector Functions
(p. 8-31)

Functions that handle storage and states

Block Path and Error Reporting
Functions (p. 8-35)

Functions for navigating paths and handling error
conditions

Code Configuration Functions (p. 8-37) Functions for tailoring code elements and comments

Sample Time Functions (p. 8-59) Functions for handling continuous and discrete time

Other Useful Functions (p. 8-67) Functions not elsewhere classified

Advanced Functions (p. 8-78) Functions generally required only for special situations

8 TLC Function Library Reference

8-2
Obsolete Functions
The following table shows obsolete functions and the functions that have
replaced them.

Obsolete Function Equivalent Replacement Function

LibBlockOutportLocation LibBlockDstSignalLocation

LibCacheGlobalPrmData Use the block function Start

LibContinuousState LibBlockContinuousState

LibControlPortInputSignal LibBlockSrcSignalLocation

LibDataInputPortWidth LibBlockInputSignalWidth

LibDataOutputPortWidth LibBlockOutputSignalWidth

LibDefineIWork
LibDefinePWork
LibDefineRWork

IWork , PWork, and RWork names are
now specified via the mdlRTW function
in your C-MEX S-function.

LibDiscreteState LibBlockDiscreteState

LibExternalResetSignal LibBlockInputSignal

LibIsEqual Use built-in function ISEQUAL

LibMapSignalSource FcnMapDataTypedSignalSource

LibMaxBlockIOWidth Function is not used in the Real-Time
Workshop.

LibMaxDataInputPortWidth Function is not used in the Real-Time
Workshop.

LibMaxDataOutputPortWidth Function is not used in the Real-Time
Workshop.

LibPathName LibGetBlockPath,
LibGetFormattedBlockPath

LibPrevZCState LibBlockPrevZCState

Obsolete Functions
LibRenameParameter Specifying parameter names is now
supported via the mdlRTW function in
your C-MEX S-function.

LinConvertZCDirection Function is not used in the Real-Time
Workshop.

Obsolete Function Equivalent Replacement Function
8-3

8 TLC Function Library Reference

8-4
Target Language Compiler Functions
This section lists the Target Language Compiler functions grouped by
category, and provides a description of each function. To view the source code
for a function, click on its name.

Common Function Arguments
Several functions take similar or identical arguments. To simplify the
reference pages, some of these arguments are documented in detail here
instead of in the reference pages.

Argument Description

portIdx Refers to an input or output port index, starting at zero. For
example the first input port of an S-function is 0.

ucv User control variable. This is an advanced feature that
overrides the lcv and sigIdx parameters. When used within
an inlined S-function, it should generally be specified as "".

lcv Loop control variable. This is generally generated by the
%roll directive via the second %roll argument (e.g.,
lcv=RollThreshold) and should be passed directly to the
library function. It will contain either "", indicating that the
current pass through the %roll is being inlined, or it will be
the name of a loop control variable such as "i", indicating
that the current pass through the %roll is being placed in a
loop. Outside of the %roll directive, this is usually specified as
"".

Target Language Compiler Functions
sigIdx
or
idx

Signal index. Sometimes referred to as the signal element
index. When accessing specific elements of an input or output
signal directly, the call to the various library routines should
have ucv="", lcv="", and sigIdx equal to the desired integer
signal index starting at 0. Note, for complex signals, sigIdx
can be an overloaded integer index specifying both whether
the real or imaginary part is being accessed and which
element. When accessing these items inside of a %roll, the
sigIdx generated by the %roll directive should be used.

Most functions that take a sigIdx argument accept it in an
overloaded form where sigIdx can be:

• An integer, e.g. 3. If the referenced signal is complex, then
this refers to the identifier for the complex container. If the
referenced signal is not complex, then this refers to the
identifier.

• An id-num usually of the form (see “Overloading sigIdx” on
page 8-6):

a "%<tRealPart>%<idx>" (e.g., "re3"). The real part of the
signal element. Usually "%<tRealPart>%<sigIdx>"
when sigIdx is generated by the %roll directive.

b "%<tImagPart>%<idx>" (e.g., "im3"). The imaginary part
of the signal element or "" if the signal is not complex.
Usually "%<tImagPart>%<sigIdx>" when sigIdx is
generated by the %roll directive.

The idx name is used when referring to a state or work vector.

Functions that accept the three arguments ucv, lcv, sigIdx
(or idx) are called differently depending upon whether or not
they are used with in a %roll directive. If they are used
within a %roll directive, ucv is generally specified as "" and
lcv and sigIdx are the same as those specified in the %roll
directive. If they are not used with in a %roll directive, ucv
and lcv are generally specified as "" and sigIdx specifies
which index to access.

Argument Description
8-5

8 TLC Function Library Reference

8-6
Overloading sigIdx
The signal index (sigIdx sometimes written as idx) can be overloaded when
passed to most library functions. Suppose we are interested in element 3 of a
signal, and ucv="", lcv="". The following table shows:

• Values of sigIdx

• Whether the signal being referenced is complex

• What the function that uses sigIdx returns

• An example of a returned variable

• Data type of the returned variable

Note that “container” in the following table refers to the object that
encapsulates both the real and imaginary parts of the number, e.g., creal_T
defined in matlabroot/extern/include/tmwtypes.h.

paramIdx Parameter index. Sometimes referred to as the parameter
element index. The handling of this parameter is very similar
to sigIdx (i.e., it can be #, re#, or im#).

stateIdx State index. Sometimes referred to as the state vector element
index. It must evaluate to an integer where the first element
starts at 0.

sigIdx Complex Function Returns Example Data
Type

"re3" yes Real part of element 3 u0[2].re real_T

"im3" yes Imaginary part of element
3

u0[2].im real_T

"3" yes Complex container of
element 3

u0[2] creal_T

3 yes Complex container of
element 3

u0[2] creal_T

Argument Description

Target Language Compiler Functions
Now suppose:

1 We are interested in element 3 of a signal

2 (ucv = "i" AND lcv == "") OR (ucv = "" AND lcv = "i")

The following table shows values of idx, whether the signal is complex, and
what the function that uses idx returns.

Notes

• The vector index is only added for wide signals.

• If ucv is not an empty string (" "), then the ucv is used instead of sigIdx in
the above examples and both lcv and sigIdx are ignored.

"re3" no Element 3 u0[2] real_T

"im3" no " " N/A N/A

"3" no Element 3 u0[2] real_T

3 no Element 3 u0[2] real_T

sigIdx Complex Function Returns

"re3" yes Real part of element i

"im3" yes Imaginary part of element i

"3" yes Complex container of element i

3 yes Complex container of element i

"re3" no Element i

"im3" no " "

"3" no Element i

3 no Element i

sigIdx Complex Function Returns Example Data
Type
8-7

8 TLC Function Library Reference

8-8
• If ucv is empty but lcv is not empty, then this function returns
"&y%<portIdx>[%<lcv>]" and sigIdx is ignored.

• It is assumed here that the roller has appropriately declared and initialized
the variables accessed inside the roller. The variables accessed inside the
roller should be specified using "rollVars" as the argument to the %roll
directive.

Input Signal Functions
Input Signal Functions

LibBlockInputSignal(portIdx, ucv, lcv, sigIdx)
Based on the input port number (portIdx), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and where this input
signal is coming from, LibBlockInputSignal returns the appropriate reference
to a block input signal.

The returned string value is a valid rvalue (right-side value) for an expression.
The block input signal can come from another block, a state vector, an external
input, or it can be a literal constant (e.g, 5.0).

Note Never use this function to access the address of an input signal.

Since the returned value can be a literal constant, you should not use
LibBlockInputSignal to access the address of an input signal. To access the
address of an input signal, use LibBlockInputSignalAddr. Accessing the
address of the signal via LibBlockInputSignal may result in a reference to a
literal constant (e.g., 5.0).

For example, the following would not work.

%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
x = &%<u>;

If %<u> refers to an invariant signal with a value of 4.95, the statement (after
being processed by the pre-processor) would be generated as

x = &4.95;

or, if the input signal sources to ground, the statement could come out as

x = &0.0;

neither of these would compile.

Avoid any such situations by using LibBlockInputSignalAddr.

%assign uAddr = LibBlockInputSignalAddr(0, "", lcv, sigIdx)
x = %<uAddr>;
8-9

8 TLC Function Library Reference

8-1
Real-Time Workshop tracks signals and parameters accessed by their address
and declares them in addressable memory.

Input Arguments
The following table summarizes the input arguments to
LibBlockInputSignal.

General Usage
Uses of LibBlockInputSignal fall into the categories described below.

Direct indexing. If ucv == "" and lcv == "", LibBlockInputSignal returns an
indexing expression for the element specified by sigIdx.

LibBlockInputSignal Arguments

Argument Description

portIdx Integer specifying the input port index (zero-based).

Note: for certain built-in blocks, portIdx can be a
string identifying the port (such as "enable" or
"trigger").

ucv User control variable. Must be a string, either an
indexing expression or "".

lcv Loop control variable. Must be a string, either an
indexing expression or "".

sigIdx Either an integer literal or a string of the form

%<tRealPart>Integer
%<tImagPart>Integer

For example, the following signifies the real part of the
signal and the imaginary part of the signal starting at 5:

"%<tRealPart>5"
"%<tImagPart>5"
0

Input Signal Functions
Loop rolling/unrolling. In this case, lcv and sigIdx are generated by the %roll
directive, and ucv must be "". A nonempty value for lcv is only allowed when
generated by the %roll directive and when using the Roller TLC file (or a user
supplied Roller TLC file that conforms to the same variable/signal offset
handling). In addition, calls to LibBlockInputSignal with lcv should occur
only when "U" or a specific input port (e.g. "u0") is passed to the %roll directive
via the roll variables argument.

The following example is appropriate for a single input/single output port
S-function.

%assign rollVars = ["U", "Y", "P"]
%roll sigIdx=RollRegions, lcv=RollThreshold, block, ...

"Roller", rollVars
%assign u = LibBlockInputSignal(0, "", lcv, sigIdx)
%assign y = LibBlockOutputSignal(0, "", lcv, sigIdx)
%assign p = LibBlockParameter(0, "", lcv, sigIdx)
%<y> = %<p> * %<u>;

%endroll

With the %roll directive, sigIdx is always the starting index of the current roll
region and lcv will be "" or an indexing variable. The following are examples
of valid values:

• Example 1:
LibBlockInputSignal(0, "", lcv, sigIdx) rtB.blockname[0]

• Example 2:

LibBlockInputSignal(0, "", lcv, sigIdx) u[i]

In Example 1, LibBlockInputSignal returns rtB.blockname[2] when the
input port is connected to the output of another block and:

• The loop control variable (lcv) generated by the %roll directive is empty,
indicating that the current roll region is below the roll threshold and sigIdx
is 0.

• The width of the input port is 1, indicating that this port is being scalar
expanded.

If sigIdx was non-zero, then rtB.blockname[sigIdx] would be returned.
For example if sigIdx was 3, then rtB.blockname[3] would be returned.
8-11

8 TLC Function Library Reference

8-1
In Example 2, LibBlockInputSignal returns u[i] when the current roll
region is above the roll threshold and the input port width is non-scalar (wide).
In this case, the Roller TLC file sets up a local variable, u, to point to the input
signal and the code in the current %roll directive is placed within a for loop.

For another example, suppose we have a block with multiple input ports where
each port has a width greater than or equal to 1 and at least one port has width
equal to 1. The following code sets the output signal to the sum of the squares
of all the input signals.

%assign y = LibBlockOutputSignal(0, "", "", 0)
%<y> = 0;

%assign rollVars = ["U"]
%foreach port = block.NumDataInputPorts - 1
%roll sigIdx=RollRegions, lcv = RollThreshold, block, ...

"Roller", rollVars
%assign u = LibBlockInputSignal(port, "", lcv, sigIdx)
%<y> += %<u> * %<u>;
%endroll

%endforeach

Since the first parameter of LibBlockInputSignal is 0-indexed, you must
index the foreach loop to start from 0 and end at NumDataInputPorts-1.
2

Input Signal Functions
User Control Variable (ucv) Handling. This is an advanced mode and generally not
needed by S-function authors.

If ucv != "", LibBlockInputSignal returns an rvalue for the input signal
using the user control variable indexing expression. The control variable
indexing expression has the following form.

- rvalue_id[%<ucv>]%<optional_real_or_imag_part>

rvalue_id is obtained by looking at the integer part of sigIdx. Specifying
sigIdx is required because the input to this block can be discontinuous,
meaning that the input can come from several different memory areas (signal
sources) and sigIdx is used to identify the area of interest for the ucv. Also,
sigIdx is used to determine whether the real or imaginary part of a signal is
to be accessed.

optional_real_or_imag_part is obtained by the string part of sigIdx (i.e.
"re", or "im", or "").

Note: the value for lcv is ignored and sigIdx must point to the same element
in the input signal to which the ucv initially points.

The handling of ucv with LibBlockInputSignal requires care. Consider a
discontinuous input signal feeding an input port as in the following block
diagram.

To use ucv in a robust manner, you must use the %roll directive with a roll
threshold of 1 and a Roller TLC file that has no loop header/trailer setup for
this input signal. In addition, you need to use ROLL_ITERATIONS to determine
the width of the current roll region, as in the following TLC code.

{
int i;
8-13

8 TLC Function Library Reference

8-1
%assign rollVars = [""]
%assign threshold = 1
%roll sigIdx=RollRegions, lcv=threshold, block, ...

"FlatRoller", rollVars
%assign u = LibBlockInputSignal(0, "i", "", sigIdx)
%assign y = LibBlockOutputSignal(0, "i+%<sigIdx>", "", sigIdx)
%assign p = LibBlockParameter(0, "i+%<sigIdx>", "", sigIdx)
for (i = 0; i < %<ROLL_ITERATIONS()>; i++) {

%<y> = %<p> * %<u>;
}

%endroll
}

Note, the FlatRoller has no loop header/trailer setup (rollVars is ignored).
Its purpose is to walk the RollRegions of the block.

Alternatively, you can force a contiguous input signal to your block by
specifying

ssSetInputPortRequiredContiguous(S, port, TRUE)

in your S-function.

In this case, the TLC code simplifies to

{
%assign u = LibBlockInputSignal(0, "i", "", 0)
%assign y = LibBlockOutputSignal(0, "i", "", 0)
%assign p = LibBlockParameter(0, "i", "", 0)

for (i = 0; i < %<DataInputPort[0].Width>; i++) {
%<y> = %<p> * %<u>;
}

}

If you create your own roller and the indexing does not conform to the way the
Roller TLC file provided by the MathWorks operates, then you will need to use
ucv instead of lcv.
4

Input Signal Functions
Input Arguments (ucv, lcv, and sigIdx) Handling
Consider the following cases :

The value returned depends on what the input signal is connected to in the
block diagram and how the function is invoked (e.g. in a %roll or directly). In
the above example:

• Cases 1 and 2 occur when an explicit call is made with the ucv set to "i".

Case 1 occurs when sigIdx points to the block I/O vector, i.e., the first
element that "i" starts with. For example, if you initialize "i" to be starting
at offset 5, then you should specify sigIdx == 5.

Case 2 occurs when sigIdx pointing to the external input vector, i.e., the first
element that "i" starts with. For example, if you initialize "i" to be starting
at offset 20, then you should specify sigIdx == 20.

• Cases 3 and 4 receive the same arguments, lcv and sigIdx, however, they
produce different return values.

Case 3 occurs when LibBlockInputSignal is called within a %roll directive
and the current roll region is being rolled (lcv != "").

Case 4 occurs when LibBlockInputSignal is called within a %roll directive
and the current roll region is not being rolled (lcv == "").

When called within a %roll directive, this function looks at ucv, lcv, and
sigIdx, the current roll region, and the current roll threshold to determine the
return value. The variable ucv has highest precedence, lcv has the next
highest precedence, and sigIdx has the lowest precedence. That is, if ucv is
specified, it will be used (thus, when called in a %roll directive it is usually "").
If ucv is not specified and lcv and sigIdx are specified, the returned value
depends on whether or not the current roll region is being placed in a for loop

Function (case 1, 2, 3,4) Example Return Value

LibBlockInputSignal(0, "i", "", sigIdx) rtB.blockname[i]

LibBlockInputSignal(0, "i", "", sigIdx) rtU.signame[i]

LibBlockInputSignal(0, "", lcv, sigIdx) u0[i1]

LibBlockInputSignal(0, "", lcv, sigIdx) rtB.blockname[0]
8-15

8 TLC Function Library Reference

8-1
or being expanded. If the roll region is being placed in a loop, then lcv is used,
otherwise, sigIdx is used.

A direct call to this function (inside or outside of a %roll directive) will use
sigIdx when ucv and lcv are specified as "".

For an example of this function, see
matlabroot/toolbox/simulink/blocks/tlc_c/sfun_multiport.tlc. See
also matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalAddr(portIdx, ucv, lcv, sigIdx)
Returns the appropriate string that provides the memory address of the
specified block input port signal.

When you need an input signal address, you must use this function instead of
appending an “&” to the string returned by LibBlockInputSignal. For
example, LibBlockInputSignal can return a literal constant, such as 5 (i.e., an
invariant input signal). Real-Time Workshop tracks when
LibBlockInputSignalAddr is called on an invariant signal and declares the
signal as “const” data (which is addressable), instead of being placed as a literal
constant in the generated code (which is not addressable).

Note, unlike LibBlockInputSignal(), the last input argument, sigIdx, is not
overloaded. Hence, if the input signal is complex, the address of the complex
container is returned.

Example
To get the address of a wide input signal and pass it to a user-function for
processing, you could use

%assign uAddr = LibBlockInputSignalAddr(0, "", "", 0)
%assign y = LibBlockOutputSignal(0, "", "", 0)
%<y> = myfcn(%<uAddr>);

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.
6

Input Signal Functions
LibBlockInputSignalAliasedThruDataTypeName(portI
dx, reim)
Returns the name of the aliased thru data type (e.g., int_T, ... creal_T)
corresponding to the specified block input port. Specify the reim argument as
"" (empty) if you want the complete signal type name.

For example, if reim == "" and the first output port is real and complex, the
data type name placed in dtname will be creal_T.

%assign dtname = LibBlockInputSignalDataTypeName(0,"")

Specify the reim argument as tRealPart if you want the raw element type
name. For example, if reim == tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalConnected(portIdx)
Returns 1 if the specified input port is connected to a block other than the
Ground block and 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalDataTypeId(portIdx)
Returns the numeric identifier (id) corresponding to the data type of the
specified block input port.

If the input port signal is complex, this function returns the data type of the
real part (or the imaginary part) of the signal.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalDataTypeName(portIdx, reim)
Returns the name of the data type (e.g., int_T, ... creal_T) corresponding to the
specified block input port.

Specify the reim argument as "" if you want the complete signal type name.
For example, if reim=="" and the first output port is real and complex, the data
type name placed in dtname will be creal_T.
8-17

8 TLC Function Library Reference

8-1
%assign dtname = LibBlockInputSignalDataTypeName(0,"")

Specify the reim argument as tRealPart if you want the raw element type
name. For example, if reim==tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockInputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalDimensions(portIdx)
Returns the dimensions vector of specified block input port, e.g., [2,3].

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalIsComplex(portIdx)
Returns 1 if the specified block input port is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalIsFrameData(portIdx)
Returns 1 if the specified block input port is frame based, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalLocalSampleTimeIndex(portIdx)
Returns the local sample time index corresponding to the specified block input
port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalNumDimensions(portIdx)
Returns the number of dimensions of the specified block input port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalOffsetTime(portIdx)
Returns the offset time corresponding to the specified block input port.
8

Input Signal Functions
See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalSampleTime(portIdx)
Returns the sample time corresponding to the specified block input port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalSampleTimeIndex(portIdx)
Returns the sample time index corresponding to the specified block input port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalWidth(portIdx)
Returns the width of the specified block input port index.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputPortIndexMode(block, idx)

Purpose
Determines the index mode of a block's input port.

Description
If a block's input port has been set as an index port and its indexing base is
marked as zero-based or one-based, this information gets written into the
model.rtw file. This function queries the indexing base in order to branch to
different code according to what the input port indexing base is.

Returns
"" for a non-index port, and "Zero-based" or "One-based" otherwise.

Arguments
block - block record

idx - port index
8-19

8 TLC Function Library Reference

8-2
Example
%if LibBlockInputPortIndexMode(block, idx) == "Zero-based"
 ...
%elseif LibBlockInputPortIndexMode(block, idx) == "One-based"
 ...
%else
...

%endif

See function in matlabroot/rtw/c/tlc/mw/blocklib.tlc.
0

Output Signal Functions
Output Signal Functions

LibBlockOutputSignal(portIdx, ucv, lcv, sigIdx)
Based on the output port number (portIdx), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and the output signal
destination, LibBlockOutputSignal returns the appropriate reference to a
block output signal.

The returned value is a valid lvalue (left-side value) for an expression. The
block output destination can be a location in the block I/O vector (another
block’s input), the state vector, or an external output.

Note Never use this function to access the address of an output signal.

Real-Time Workshop tracks when a variable (e.g., a signal or parameter) is
accessed by its address. To access the address of an output signal, use
LibBlockOutputSignalAddr as in the following example.

%assign yAddr = LibBlockOutputSignalAddr(0, "", lcv, sigIdx)
x = %<yAddr>;

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalAddr(portIdx, ucv, lcv, sigIdx)
Returns the appropriate string that provides the memory address of the
specified block output port signal.

When an output signal address is needed, you must use this function instead
of taking the address that is returned by LibBlockOutputSignal. For example,
LibBlockOutputSignal can return a literal constant, such as 5 (i.e., an
invariant output signal). When LibBlockOutputSignalAddr is called on an
invariant signal, the signal is declared as a “const” instead of being placed as a
literal constant in the generated code.

Note, unlike LibBlockOutputSignal(), the last argument, sigIdx, is not
overloaded. Hence, if the output signal is complex, the address of the complex
container is returned.
8-21

8 TLC Function Library Reference

8-2
Example
To get the address of a wide output signal and pass it to a user-function for
processing, you could use

%assign u = LibBlockOutputSignalAddr(0, "", "", 0)
%assign y = LibBlockOutputSignal(0, "", "", 0)
%<y> = myfcn (%<u>);

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalAliasedThruDataTypeName(por
tIdx, reim)
Returns the type name string (e.g. int_T, ... creal_T) of the aliased data
type corresponding to the specified block output port.

Specify the reim argument as "" if you want the complete signal type name.
For example if reim == "" and the first output port is real and complex, the
data type name placed in dtname will be creal_T:

%assign dtname = LibBlockOutputSignalDataTypeName(0x,"")

Specify the reim argument as tRealPart if you want the raw element type
name. For example if reim == tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalBeingMerged(portIdx)
Returns whether the specified output port is connected to a merge block.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalConnected(portIdx)
Returns 1 if the specified output port is connected to a block other than the
Ground block and 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.
2

Output Signal Functions
LibBlockOutputSignalDataTypeId(portIdx)
Returns the numeric ID corresponding to the data type of the specified block
output port.

If the output port signal is complex, this function returns the data type of the
real (or the imaginary) part of the signal.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalDataTypeName(portIdx, reim)
Returns the type name string (e.g., int_T, ... creal_T) of the data type
corresponding to the specified block output port.

Specify the reim argument as "" if you want the complete signal type name.
For example, if reim=="" and the first output port is real and complex, the data
type name placed in dtname will be creal_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0x,"")

Specify the reim argument as tRealPart if you want the raw element type
name. For example, if reim==tRealPart and the first output port is real and
complex, the data type name returned will be real_T.

%assign dtname = LibBlockOutputSignalDataTypeName(0,tRealPart)

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalDimensions(portIdx)
Returns the dimensions of specified block output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalIsComplex(portIdx)
Returns 1 if the specified block output port is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalIsFrameData(portIdx)
Returns 1 if the specified block output port is frame based, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.
8-23

8 TLC Function Library Reference

8-2
LibBlockOutputSignalLocalSampleTimeIndex(portIdx)
 Returns the local sample time index corresponding to the specified block
output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalNumDimensions(portIdx)
Returns the number of dimensions of the specified block output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalOffsetTime(portIdx)
Returns the offset time corresponding to the specified block output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalSampleTime(portIdx)
Returns the sample time corresponding to the specified block output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalSampleTimeIndex(portIdx)
Returns the sample time index corresponding to the specified block output
port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalWidth(portIdx)
Returns the width of specified block output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputPortIndexMode(block, idx)

Purpose
Determines the index mode of a block's output port.
4

Output Signal Functions
Description
If a block's output port has been set as an index port and its indexing base is
marked as zero-based or one-based, this information gets written into the
model.rtw file. This function queries the indexing base in order to branch to
different code according to what the output port indexing base is.

Returns
"" for a non-index port, and "Zero-based" or "One-based" otherwise.

Arguments
block - block record

idx - port index

Example
%if LibBlockOutputPortIndexMode(block, idx) == "Zero-based"
 ...
%elseif LibBlockOutputPortIndexMode(block, idx) == "One-based"
 ...
%else
...

%endif

See function in matlabroot/rtw/c/tlc/mw/blocklib.tlc.
8-25

8 TLC Function Library Reference

8-2
Parameter Functions

LibBlockMatrixParameter(param,rucv,rlcv,ridx,cucv,
clcv,cidx)
Returns the appropriate matrix parameter for a block given the row and
column user control variables (rucv, cucv), loop control variables (rlcv, clcv),
and indices (ridx, cidx). Generally, blocks should use LibBlockParameter. If
you have a matrix parameter, you should write it as a column major vector and
access it via LibBlockParameter.

Note Loop rolling is currently not supported, and will generate an error if
requested (i.e., if either rlcv or clcv is not equal to "").

The row and column index arguments are similar to the arguments for
LibBlockParameter. The column index (cidx) is overloaded to handle complex
numbers.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockMatrixParameterAddr(param,rucv,rlcv,ridx,
cucv,clcv,cidx)
Returns the address of a matrix parameter.

Note LibBlockMatrixParameterAddr returns the address of a matrix
parameter. Loop rolling is not supported (i.e., rlcv and clcv should both be
the empty string).

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockMatrixParameterBaseAddr(param)
Returns the base address of a matrix parameter.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.
6

Parameter Functions
LibBlockParameter(param, ucv, lcv, sigIdx)
Based on the parameter reference (param), the user control variable (ucv), the
loop control variable (lcv), the signal index (sigIdx), and the state of
parameter inlining, this function returns the appropriate reference to a block
parameter.

The returned value is always a valid rvalue (right-side value for an
expression). For example,

To illustrate the basic workings of this function, assume a noncomplex vector
signal where Gain[0]=4.55:

LibBlockParameter(Gain, "", "i", 0)

Case Function Call May Produce

1 LibBlockParameter(Gain, "i", lcv, sigIdx) rtP.blockname[i]

2 LibBlockParameter(Gain, "i", lcv, sigIdx) rtP.blockname

3 LibBlockParameter(Gain, "", lcv, sigIdx) p_Gain[i]

4 LibBlockParameter(Gain, "", lcv, sigIdx) p_Gain

5 LibBlockParameter(Gain, "", lcv, sigIdx) 4.55

6 LibBlockParameter(Gain, "", lcv, sigIdx) rtP.blockname.re

7 LibBlockParameter(Gain, "", lcv, sigIdx) rtP.blockname.im

Case Rolling Inline
Parameter

Type Result Required In
Memory

1 0 yes scalar 4.55 no

2 1 yes scalar 4.55 no

3 0 yes vector 4.55 no

4 1 yes vector p_Gain[i] yes

5 0 no scalar rtP.blk.Gain no
8-27

8 TLC Function Library Reference

8-2
Note case 4. Even though inline parameter is true, the parameter must be
placed in memory (RAM) since it’s accessed inside a for-loop.

Note This function also supports expressions when used with inlined
parameters and parameter tuning.

For example, if the parameter field had the MATLAB expression '2*a', this
function will return the C expression '(2 * a)'. The list of functions supported
by this function is determined by the functions FcnConvertNodeToExpr and
FcnConvertIdToFcn. To enhance functionality, augment or update either of
these functions.

Note that certain types of expressions are not supported such as x * y where
both x and y are nonscalars.

See the Real-Time Workshop documentation about tunable parameters for
more details on the exact functions and syntax that is supported.

Warning
Do not use this function to access the address of a parameter, or you may end
up referencing a number (i.e., &4.55) when the parameter is inlined. You can
avoid this situation by using LibBlockParameterAddr().

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterAddr(param, ucv, lcv, idx)
Returns the address of a block parameter.

6 0 no scalar rtP.blk.Gain no

7 0 no vector rtP.blk.prm[0] no

8 0 no vector p.Gain[i] yes

Case Rolling Inline
Parameter

Type Result Required In
Memory
8

Parameter Functions
Using LibBlockParameterAddr to access a parameter when the global
InlineParameters variable is equal to 1 will cause the variable to be declared
“const” in RAM instead of being inlined.

Also, trying to access the address of an expression when inline parameters is
on and the expression has multiple tunable/rolled variables in it will result in
an error.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterBaseAddr(param)
Returns the base address of a block parameter.

Using LibBlockParameterBaseAddr to access a parameter when the global
InlineParameters variable is equal to one will cause the variable to be
declared "const" in RAM instead of being inlined.

Note that Accessing the address of an expression when Inline parameters is
on and the expression has multiple tunable/rolled variables in it will result in
an error.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterDataTypeId(param)
Returns the numeric ID corresponding to the data type of the specified block
parameter.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterDataTypeName(param, reim)
Returns the name of the data type corresponding to the specified block
parameter.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterDimensions(param)
 Returns a row vector of length N (where N >= 1) giving the dimensions of the
parameter data.
8-29

8 TLC Function Library Reference

8-3
For example:

%assign dims = LibBlockParameterDimensions("paramName")
%assign nDims = SIZE(dims,1)
%foreach i=nDims

/* Dimension %<i+1> = %<dims[i]> */
%endforeach

This function differs from LibBlockParameterSize in that it returns the
dimensions of the parameter data prior to collapsing the Matrix parameter to
a column-major vector. The collapsing occurs for run-time parameters that
have specified their outputAsMatrix field as False.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterIsComplex(param)
Returns 1 if the specified block parameter is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterSize(param)
Returns a vector of size 2 in the format [nRows, nCols] where nRows is the
number of rows and nCols is the number of columns.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.

LibBlockParameterWidth(param)
Returns the number of elements (width) of a parameter.

See function in matlabroot/rtw/c/tlc/lib/paramlib.tlc.
0

Block State and Work Vector Functions
Block State and Work Vector Functions

LibBlockContinuousState(ucv, lcv, idx)
Returns a string corresponding to the specified block continuous state (CSTATE)
element.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockContStateDisabled(ucv, lcv, idx)
Returns a string corresponding to the specified block continuous state (CSTATE)
element.

See also:

LibBlockDiscreteState

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockContinuousStateDerivative(ucv, lcv, idx)
Returns a string corresponding to the specified block continuous state
(CSTATE) element.

See also:

LibBlockDiscreteState

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWork(dwork, ucv, lcv, sigIdx)
Returns a string corresponding to the specified block DWORK element.

Note, the last input argument is overloaded to handle complex DWorks.

sigIdx = "re3"— returns the real part of element 3 if the dwork is complex,
otherwise returns element 3.

sigIdx = "im3"— returns the imaginary part of element 3 if the dwork is
complex, otherwise returns "".

sigIdx = "3" — returns the complex container of element 3 if the dwork is
complex, otherwise returns element 3.
8-31

8 TLC Function Library Reference

8-3
If either ucv or lcv is specified (i.e., it is not equal to "") then the index part of
the last input argument (sigIdx) is ignored.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkAddr(dwork, ucv, lcv, idx)
Returns a string corresponding to the address of the specified block DWORK
element.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkDataTypeId(dwork)
Returns the data type ID of specified block DWORK.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkDataTypeName(dwork, reim)
Returns the data type name of specified block DWORK.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkIsComplex(dwork)
Returns 1 if the specified block DWORK is complex, returns 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkName(dwork)
Returns the name of the specified block DWORK.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkStorageClass(dwork)
 Returns the storage class of specified block DWORK.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkStorageTypeQualifier(dwork)
Returns the storage type qualifier of specified block DWORK.
2

Block State and Work Vector Functions
Function: LibBlockDWorkStorageTypeQualifier(dwork) void

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkUsedAsDiscreteState(dwork)
Returns 1 if the specified block DWORK is used as a discrete state, returns 0
otherwise.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDWorkWidth(dwork)
Returns the width of the specified block DWORK.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockDiscreteState(ucv, lcv, idx)
Returns a string corresponding to the specified block discrete state (DSTATE)
element.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockIWork(definediwork, ucv, lcv, idx)
Returns a string corresponding to the specified block IWORK element. See
LibBlockRWork()

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockMode(ucv, lcv, idx)
Returns a string corresponding to the specified block MODE element.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockNonSampledZC(ucv, lcv, NonSampledZCIdx)
Returns a string corresponding to the specified block NonSampledZC.

LibBlockNonSampledZC returns the appropriate element for the non-sampled
zero crossing state based on ucv, lcv, and NonSampledZCIdx.

Arguments:
8-33

8 TLC Function Library Reference

8-3
ucv: User control variable string

lcv: Loop control variable string

NonSampledZCIdx: Non-Sampled zero crossing index

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockPWork(definedpwork, ucv, lcv, idx)
Returns a string corresponding to the specified block PWORK element. See
LibBlockRWork().

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibBlockRWork(definedrwork, ucv, lcv, idx)
Returns a string corresponding to the specified block RWORK element. The first
argument, definedrwork, would typically be a symbol defined in the mdlRTW()
routine of the C MEX file with something like the code below.

ssWriteRTWWorkVect([...], "RWork", [...], "MyRWorkName", [...])
Alternately, if no such RWork defines have been made, definedrwork will be
ignored and the raw RWork vector will be accessed. In this case all uses in a loop
rolling context are disallowed.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.
4

Block Path and Error Reporting Functions
Block Path and Error Reporting Functions

LibBlockReportError(block,errorstring)
This should be used when reporting errors for a block. This function is designed
to be used from block target files (e.g., the TLC file for an inlined S-function).

This function can be called with or without the block record scoped. To call this
function without a block record scoped, pass the block record. To call this
function when the block is scoped, pass block = []. Specifically

LibBlockReportError([],"error string") --If block is scoped
LibBlockReportError(blockrecord,"error string")--If block record is

available

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibBlockReportFatalError(block,errorstring)
This should be used when reporting fatal (assert) errors for a block. Use this
function for defensive programming. Refer to “TLC Error Handling” on
page A-1.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibBlockReportWarning(block,warnstring)
This should be used when reporting warnings for a block. This function is
designed to be used from block target files (e.g., the TLC file for an inlined
S-function).

This function can be called with or without the block record scoped. To call this
function without a block record scoped, pass the block record. To call this
function when the block is scoped, pass block = [].

Specifically

LibBlockReportWarning([],"warn string") --If block is scoped
LibBlockReportWarning(blockrecord,"warn string")--If block record is

available

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
8-35

8 TLC Function Library Reference

8-3
LibGetBlockName(block)
LibGetBlockName returns the short block path name string for a block record
excluding carriage returns and other special characters which may be present
in the name.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetBlockPath(block)
LibGetBlockPath returns the full block path name string for a block record,
including carriage returns and other special characters that may be present in
the name. Currently, the only other special string sequences defined are '/*'
and '*/'.

The full block path name string is useful when accessing blocks from MATLAB.
For example, you can use the full block name with hilite_system() via FEVAL
to match the Simulink path name exactly.

Use LibGetFormattedBlockPath to get a block path suitable for placing in a
comment or error message.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetFormattedBlockPath(block)
LibGetFormattedBlockPath returns the full path name string of a block
without any special characters. The string returned from this function is
suitable for placing the block name, in comments or generated code, on a single
line.

Currently, the special characters are carriage returns, '/*', and '*/'. A
carriage return is converted to a space, '/*' is converted to '/+', and '*/' is
converted to '+/'. Note that a '/' in the name is automatically converted to a
'//' to distinguish it from a path separator.

Use LibGetBlockPath to get the block path needed by MATLAB functions used
in reference blocks in your model.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
6

Code Configuration Functions
Code Configuration Functions

LibAddSourceFileCustomSection(file,
builtInSection,newSection)
Add a custom section to a source file. You must associate a custom section with
one of the built-in sections: Includes, Defines, Types, Enums, Definitions,
Declarations, Functions, or Documentation.

No action if the section already exists, except to report an error if a inconsistent
built-in section association is attempted.

Only available with Real-Time Workshop Embedded Coder.

Arguments:

file - Source file reference (Scope)

builtInSection - Name of the associated built-in section (String)

newSection - Name of the new (custom) section (String)

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibAddToCommonIncludes(incFileName)
Adds items to a unique-ified list of #include/package spec items.

Should be called from block TLC methods to specify generation of #include
statements in model.h. Specify the names of local files bare, e.g.,
"myinclude.h", but specify the names of files on the include path files inside
angle brackets, e.g., “<sysinclude.h>”. Each call to this function adds the
specified file to the list only if it is not already there. <math.h> and "math.h"
are considered different files for the purpose of uniqueness. The #include
statements are placed inside model.h.

Example:

%<LibAddToCommonIncludes("tpu332lib.h")>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibAddToModelSources(newFile)
This function serves two purposes:
8-37

8 TLC Function Library Reference

8-3
• To notify the Real-Time Workshop build process that it must build with the
specified source file, and

• To update the ‘SOURCES: file1.c file2.c ...' comment in the generated
code.

For inlined S-functions, LibAddToModelSources is generally called from
BlockTypeSetup. This function adds a file name to the list of sources needed to
build this model. This functions returns 1 if the filename passed in was a
duplicate (i.e. it was already in the sources list) and 0 if it was not a duplicate.

As an S-function author, we recommend using the SFunctionModules block
parameter instead of this function. See Writing S-functions.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibCacheDefine(buffer)
Each call to this function appends your buffer to the existing cache buffer. For
blocks, this function is generally called from BlockTypeSetup.

This functions caches #define statements for inclusion in model.h (or
model_private.h). LibCacheDefine should be called from inside
BlockTypeSetup to cache a #define statement. Each call to this function
appends your buffer to the existing cache buffer. The #define statements are
placed inside model.h (or model_private.h).

 Example.

%openfile buffer
#define INTERP(x,x1,x2,y1,y2) (y1+((y2 - y1)/(x2 - x1))*(x-x1))
#define this that
%closefile buffer
%<LibCacheDefine(buffer)>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibCacheExtern(buffer)
LibCacheExtern should be called from inside BlockTypeSetup to cache an
extern statement. Each call to this function appends your buffer to the existing
cache buffer. The extern statements are placed in model.h.
8

Code Configuration Functions
Example
%openfile buffer
extern real_T mydata;
%closefile buffer
%<LibCacheExtern(buffer)>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibCacheFunctionPrototype(buffer)
LibCacheFunctionPrototype should be called from inside BlockTypeSetup to
cache a function prototype. Each call to this function appends your buffer to the
existing cache buffer. The prototypes are placed inside model.h.

Example
%openfile buffer
extern int_T fun1(real_T x);
extern real_T fun2(real_T y, int_T i);
%closefile buffer
%<LibCacheFunctionPrototype(buffer)>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibCacheIncludes(buffer)
LibCacheIncludes should be called from inside BlockTypeSetup to cache
#include statements. Each call to this function appends your buffer to the
existing cache buffer. The #include statements are placed inside model.h.

Example
%openfile buffer
#include "myfile.h"
%closefile buffer
%<LibCacheIncludes(buffer)>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibCacheTypedefs(buffer)
LibCacheTypedefs should be called from inside BlockTypeSetup to cache
typedef declarations. Each call to this function appends your buffer to the
8-39

8 TLC Function Library Reference

8-4
existing cache buffer. The typedef statements are placed inside model.h (or
model_common.h).

Example
%
openfile buffer
typedef foo bar;
%closefile buffer
%<LibCacheTypedefs(buffer)>

See function in matlabroot/rtw/c/tlc/lib/cachelib.tlc.

LibRegisterGNUMathFcnPrototypes()
Example of registering target-specific math functions. This one registers GNU
C math function mappings for a target with a GNU C compiler (e.g., gcc
2.9x.yy+ is compliant).

See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibRegisterISOCMathFcnPrototypes()
Example of registering target-specific math functions. This function registers
ISO C math function mappings for a target with an ISO C 9x compliant
compiler (e.g., gcc 2.9x.yy+ is).

See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibRegisterMathFcnPrototype(RTWName,
RTWType, IsExprOK, IsCplx, NumInputs,
FcnName, FcnType, HdrFile)
Set a specific name and input prototype of a given function for the current
target. This overrides the default names. Data types are in string form.

See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibCallModelInitialize()
Returns necessary code for calling the model's initialize function (valid for ERT
only).
0

Code Configuration Functions
See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibCallModelStep(tid)
Returns necessary code for calling the model's step function (valid for ERT
only).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibCallModelTerminate()
Returns necessary code for calling the model's terminate function (valid for
ERT only).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibCallSetEventForThisBaseStep(buffername)
Returns necessary code for calling the model's set events function (valid for
ERT only).

Argument
buffername - Name of the variable used to buffer the events. For the example
ert_main.c this is "eventFlags".

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibCreateSourceFile(type,creator,name)
Create a new C file, and return its reference. If the file already exists, simply
return its reference.

Syntax
%assign fileH = LibCreateSourceFile("Source", "Custom",
"foofile")

Arguments
type (String) - Valid values are "Source" and "Header" for .c and .h files,
respectively.

creator (String) - Who's creating the file? An error is reported if different
creators attempt to create the same file.
8-41

8 TLC Function Library Reference

8-4
name (String) - Base name of the file (i.e., without the extension). Note that files
are not written to disk if they are empty.

Returns
Reference to the model file (Scope).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetMdlPrvHdrBaseName()
Return the base name of the model's private header (e.g., model_private.h)
file

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetMdlPubHdrBaseName()
Return the base name of the model's public header (e.g., model.h) file

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetMdlSrcBaseName()
Return the base name of the model's main source (e.g., model.c) file

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetModelDotCFile()
Get the record for the model.c file. Additional code can then be cached using
LibSetSourceFileSection().

Call syntax
%assign srcFile = LibGetModelDotCFile()
%<LibSetSourceFileSection(srcFile, "Functions", mybuf)>

Returns
Returns the model.c source file record.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.
2

Code Configuration Functions
LibGetModelDotHFile()
Get the record for the model.h file. Additional code can then be cached using
LibSetSourceFileSection().

Call syntax
 %assign hdrFile = LibGetModelDotHFile()
 %<LibSetSourceFileSection(hdrFile, "Functions", mybuf)>

Returns
Returns the model.h source file record.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetModelName()
Return name of the model (no extension)

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetNumSourceFiles()
Get the number of source files (.c and .h) that have been created.

Call syntax
%assign numFiles = LibGetNumSourceFiles()

Returns
Returns the number of files (Number).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetRTModelErrorStatus()
Returns the code required to get the model error status

Call syntax
%<LibGetRTModelErrorStatus()>;

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.
8-43

8 TLC Function Library Reference

8-4
LibGetSourceFileCustomSection(file,attrib)
Get a custom section previously created with
LibAddSourceFileCustomSection.

Arguments:

file - Source file reference or index (Scope or Number)

attrib - Name of custom section (String)

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetSourceFileFromIdx(fileIdx)
Return a model file reference based on its index. This is very useful for a
common operation on all files. For example, to set the leading file banner of all
files.

Call syntax
%assign fileH = LibGetSourceFileFromIdx(fileIdx)

Argument
fileIdx (Number) - Index of model file (that is internally managed by RTW).

Returns
Reference (Scope) to the model file.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibGetSourceFileTag(fileIdx)
Returns fileName_h and fileName_c for header and source files, respectively
where fileName is the name of the model file.

Call syntax
%assign tag = LibGetSourceFileTag(fileIdx)

Argument
fileIndex (Number) - File index.
4

Code Configuration Functions
Returns
Returns the tag (String).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibMdlStartCustomCode(buffer, location)
Place declaration statements and executable code inside the start function.
Start code is executed once, during the model initialization phase.

Syntax
LibMdlStartCustomCode(buffer, location)

Arguments
 buffer: String buffer to append to internal cache buffer

 location:

 "header" to place buffer at top of function

 "declaration" same as specifying header

 "execution" to place buffer at top of function, but after header

 "trailer" to place buffer at bottom of function)

Returns
Nothing

Description
LibMdlStartCustomCode places declaration statements and executable code
inside the start function. This code gets output into the following functions
depending on the current code format:

Function Name Code Format

<model>_initialize Embedded-C

mdlStart S-function

MdlStart RealTime, RealTimeMalloc
8-45

8 TLC Function Library Reference

8-4
Each call to this function appends your buffer to the internal cache buffer.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

LibMdlTerminateCustomCode(buffer, location)

Purpose
Place declaration statements and executable code inside the terminate
function.

Syntax
LibMdlTerminateCustomCode(buffer, location)

Arguments
buffer - String buffer to append to internal cache buffer

location -Where to place the buffer’s contents

Returns
Nothing

Description
LibMdlTerminateCustomCode places declaration statements and executable
code inside the terminate function.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)
6

Code Configuration Functions
This code gets output into the following functions depending on the current
code format:

Each call to this function appends your buffer to the internal cache buffer.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

LibSetRTModelErrorStatus(str)
Returns the code required set the model error status

Argument
str (string) - char * to a C string

Call syntax
%<LibSetRTModelErrorStatus("\"Overrun\"")>;

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibSetSourceFileCodeTemplate(opFile,name)
By default, *.c and *.h files are generated with the code templates specified in
the RTW GUI. This function allows you to change the template for a file. Uses
the "Code templates" entered into the RTW Templates UI.

Note Custom templates is a feature of RTW Embedded Coder.

Call syntax
%assign tag = LibSetSourceFileCodeTemplate(opFile,name)

Function Name Code Format

model_terminate Embedded-C

mdlTerminate S-function

MdlTerminate RealTime, RealTimeMalloc
8-47

8 TLC Function Library Reference

8-4
Arguments
 opFile (Scope) - Reference to file

 name (String) - Name of the desired template

Returns
Nothing

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibSetSourceFileCustomSection(file,attrib,value)
Set a custom section previously created with
LibAddSourceFileCustomSection. Only available with Real-Time Workshop
Embedded Coder.

Arguments
file (Scope or Number) - Source file reference or index

attrib (String) - Name of custom section

value (String) - value to be appended to section

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibSetSourceFileOutputDirectory(opFile,name)
By default, *.c and *.h files are generated into the RTW build directory. This
function allows you to change the default location. Note that the caller is
reponsible for specifying a valid directory.

Call syntax
%assign tag = LibSetSourceFileOutputDirectory(opFile,dirName)

Arguments
opFile (Scope) - Reference to file

dirName (String) - Name of the desired output directory

Returns
Nothing
8

Code Configuration Functions
See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibSetSourceFileSection(fileH, section, value)
Add to the contents of a file. Valid file sections include:

Banner Set the file banner (comment) at the top of the
file.

Includes Append to the #include section.

Defines Append to the #define section.

IntrinsicTypes Append to the intrinsic typedef section. Intrinsic
types are those that only depend on intrinsic C
types.

PrimitiveTypedefs Append to the primitive typedef section.
Primitive typedefs are those that only depend on
intrinsic C types and any typedefs previously
defined in the IntrinsicTypes section.

UserTop Append to the "user top" section.

Typedefs Append to the typedef section. Typedefs can
depend on any previously defined type.

Enums Append to the enumerated types section.

Definitions Append to the data definition section.

ExternData (reserved) RTW extern data.

ExternFcns (reserved) RTW extern functions.

FcnPrototypes (reserved) RTW function prototypes.

Declarations Append to the data declaration section.

Functions Append to the C functions section.

CompilerErrors Append to the #warning section.

CompilerWarnings Append to the #error section.
8-49

8 TLC Function Library Reference

8-5
Code is emitted by Real-Time Workshop in the order in which it is listed above.

Call Syntax
Example (iterating over all files):

%openfile tmpBuf
whatever

%closefile tmpBuf

%foreach fileIdx = LibGetNumSourceFiles()
%assign fileH = LibGetSourceFileFromIdx(fileIdx)
%<LibSetSourceFileSection(fileH,"SectionOfInterest",tmpBuf)>

%endforeach

%assign fileH = LibCreateSourceFile("Header","Custom","foofile")
%<LibSetSourceFileSection(fileH,"Defines","#define FOO 5.0\n")

Arguments
fileH - Reference or index to a file (Scope or Number).

section - File section of interest (String).

value - Value (String).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibSystemDerivativeCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's
derivative function.

Syntax
LibSystemDerivativeCustomCode(system, buffer, location)

Documentation Append to the documentation (comment) section.

UserBottom Append to the "user bottom" section.
0

Code Configuration Functions
Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

location - (String) Where to place the buffer

Returns
Nothing

Description
LibSystemDerivativeCustomCode places declaration statements and
executable code inside the system's derivative function.

This code gets output into the following functions depending on the current
code format:

This function is not relevant for the Embedded-C code format since blocks with
continuous states cannot be used.

Each call to this function appends your buffer to the internal cache buffer. An
error is generated if you attempt to add code to a subsystem that does not have
any continuous states.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)

Function Name Code Format

mdlDerivatives S-function

MdlDerivatives RealTime, RealTimeMalloc
8-51

8 TLC Function Library Reference

8-5
LibSystemDisableCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's disable
function.

Syntax
LibSystemDisableCustomCode(system, buffer, location)

Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

location - (String) Where to place the buffer

Returns
Nothing

Description
LibSystemDisableCustomCode places declaration statements and executable
code inside the system's disable function. Each call to this function appends
your buffer to the internal cache buffer.

An error is generated if you attempt to add code to a subsystem that does not
have a disable function.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)
2

Code Configuration Functions
LibSystemEnableCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's enable
function.

Syntax
LibSystemEnableCustomCode(system, buffer, location)

Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

location - (String) Where to place the buffer

Returns
Nothing

Description
LibSystemEnableCustomCode places declaration statements and executable
code inside the system's enable function. Each call to this function appends
your buffer to the internal cache buffer.

An error is generated if you attempt to add code to a subsystem that does not
have an enable function.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)
8-53

8 TLC Function Library Reference

8-5
LibSystemInitializeCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's initialize
function.

Syntax
LibSystemInitializeCustomCode(system, buffer, location)

Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

location - (String) Where to place the buffer

Returns
Nothing

Description
LibSystemInitializeCustomCode places declaration statements and
executable inside the system's initialize function.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)
4

Code Configuration Functions
This code gets output into the following functions for the root system depending
on the current code format:

Code for a subsystem gets output into the subsystem's initialization function.
Each call to this function appends your buffer to the internal cache buffer.

Note Enable systems which are not configured to reset on enable get inlined
into MdlStart. For this case, the system's custom code is found in MdlStart
above and below the enable system's initialization code.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

LibSystemOutputCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's output
function.

Syntax
LibSystemOutputCustomCode(system, buffer, location)

Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

Function Name Code Format

model_initialize Embedded-C

mdlInitializeConditions S-function

MdlStart RealTime, RealTimeMalloc
8-55

8 TLC Function Library Reference

8-5
location - (String) Where to place the buffer

Returns
Nothing

Description:

LibSystemOutputCustomCode places declaration statements and executable
code inside the system's output function. This code gets output into the
following functions depending on the current code format:

Each call to this function appends your buffer to the internal cache buffer.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

LibSystemUpdateCustomCode(system, buffer,
location)

Purpose
Place declaration statements and executable code inside the system's update
function.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)

Function Name Code Format

model_step Embedded-C (CombineOutputUpdateFcns is one)

model_output Embedded-C (CombineOutputUpdateFcns is zero)

mdlOutputs S-function

MdlOutputs RealTime, RealTimeMalloc
6

Code Configuration Functions
Syntax
LibSystemUpdateCustomCode(system, buffer, location)

Arguments
system - Reference to a system

buffer - (String) buffer to append to internal cache buffer

location - (String) Where to place the buffer

Returns
Nothing

Description
LibSystemUpdateCustomCode places declaration statements and executable
code inside the system's update function. This code gets output into the
following functions depending on the current code format:

Each call to this function appends your buffer to the internal cache buffer.

See function in matlabroot/rtw/c/tlc/mw/hookslib.tlc.

"header" to place buffer at top of function

"declaration" same as specifying header

"execution" to place buffer at top of function, but after header

"trailer" to place buffer at bottom of function)

Function Name Code Format

model_step Embedded-C (CombineOutputUpdateFcns is one)

model_update Embedded-C (CombineOutputUpdateFcns is zero)

mdlUpdate S-function

MdlUpdate RealTime, RealTimeMalloc
8-57

8 TLC Function Library Reference

8-5
LibWriteModelData()
Returns necessary data for the model (valid for ERT only).

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibWriteModelInput(tid,rollThreshold)
Return the code necessary to write to a particular root input (i.e., a model
inport block). Valid for ERT only.

Arguments
tid (Number) - Task identifier (0 is fastest rate and n is the slowest)

rollThreshold - Width of signal before wrapping in a for loop.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibWriteModelInputs()
Return the code necessary to write to root inputs (i.e., all the model inport
blocks). Valid for ERT only.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibWriteModelOutput(tid,rollThreshold)
Return the code necessary to write to a particular root output (i.e., a model
outport block). Valid for ERT only.

Arguments
tid (Number) - Task identifier (0 is fastest rate and n is the slowest)

rollThreshold - Width of signal before wrapping in a for loop.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibWriteModelOutputs()
Return the code necessary to write to root outputs (i.e., all the model outport
blocks). Valid for ERT only.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.
8

Sample Time Functions
Sample Time Functions

LibAsynchronousTriggeredTID(tid)
Returns whether this TID corresponds to a asynchronous triggered rate.

 See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibBlockSampleTime(block)
Returns the block’s sample time. The returned value depends on the sample
time classification of the block, as shown in the following table.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibGetClockTick(tid)
Returns integer task time (current clock tick of the task timer). The resolution
of the timer can be obtained from LibGetClockTickStepSize(tid). The data
type id of the timer can be obtained from LibGetClockTickDataTypeId(tid).

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetClockTickDataTypeId(tid)
Returns clock tick data type id.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

Block Classification Returned Value

Discrete The actual sample time of a block (a real number
greater than 0.)

Continuous 0.0

Triggered -1.0

Constant -2.0
8-59

8 TLC Function Library Reference

8-6
LibGetClockTickHigh(tid)
Return the high byte of integer task time

Returns high order word of integer task time. This function is used when
uint32 pairs are used to store absolute time. The resolution of clock tick can be
obtained from LibGetClockTickStepSize(tid).

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetClockTickStepSize(tid)
Returns clock tick step size, which is the resolution of the integer task time.
This function cannott be used if the task doesn't have a timer.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetElapseTime(system)
Returns time elapsed since the last time the subsystem started to execute.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetElapseTimeCounter(system)
Returns an integer elapsed time. This is the number of clock ticks elapsed since
the last time the system started. To get real-world elapsed time, this integer
elapsed time must be multiplied by the applicable resolution.

You can obtain the resolution by calling
LibGetElapseTimeResolution(system). You can obtain the data type id of
integer elapsed time counter by calling
LibGetElapseTimeCounterDTypeId(system).

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetElapseTimeCounterDTypeId(system)
Returns the date type id of the integer elapsed time returned by
LibGetElapseTimeCounter

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
0

Sample Time Functions
LibGetElapseTimeResolution(system)
Returns the resolution of the elapsed time returned by
LibGetElapseTimeCounter

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetGlobalTIDFromLocalSFcnTID(sfcnTID)
Returns the model task identifier (sample time index) corresponding to the
specified local S-function task identifier or port sample time. This function
allows you to use one function to determine a global TID, independent of port-
or block-based sample times.

Calling this function with an integer argument is equivalent to the statement
SampleTimesToSet[sfcnTID][1]. SampleTimesToSet is a matrix that maps
local S-function TIDs to global TIDs.

The input argument to this function should be either

• sfcnTID: integer (e.g., 2)

For block-based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,N) with N > 1 was specified), sfcnTID is an integer
starting at 0 of the corresponding local S-function sample time.

• or sfcnTID: string of the form "InputPortIdxI", "OutputPortIdxI" where
I is a number ranging from 0 to the number of ports (e.g., "InputPortIdx0",
"OutputPortIdx7"). For port-based sample times (e.g., in S-function
mdlInitializeSizes,
ssSetNumSampleTimes(S,PORT_BASED_SAMPLE_TIMES) was specified),
sfcnTID is a string giving the input (or output) port index.

Examples

Multirate block.

%assign globalTID = LibGetGlobalTIDFromLocalSFcnTID(2)

or
%assign globalTID =
LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx4")
8-61

8 TLC Function Library Reference

8-6
%assign period =
CompiledModel.SampleTime[globalTID].PeriodAndOffset[0]
%assign offset =
CompiledModel.SampleTime[globalTID].PeriodAndOffset[1]

Inherited sample time block.

%switch (LibGetSFcnTIDType(0))
%case "discrete"
%case "continuous"

%assign globalTID = LibGetGlobalTIDFromLocalSFcnTID(2)
%assign period = ...
CompiledModel.SampleTime[globalTID].PeriodAndOffset[0]

%assign offset = ...
CompiledModel.SampleTime[globalTID].PeriodAndOffset[1]

%breaksw
%case "triggered"

%assign period = -1
%assign offset = -1
%breaksw

%case "constant"
%assign period = rtInf
%assign offset = 0
%breaksw

%default
%<LibBlockReportFatalError([],"Unknown tid type")>

%endswitch

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetNumSFcnSampleTimes(block)
Returns the number of S-function sample times for a block.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
2

Sample Time Functions
LibGetSFcnTIDType(sfcnTID)
Returns the type of the specified S-function’s task identifier (sfcnTID).

"continuous" if the specified sfcnTID is continuous.

"discrete" if the specified sfcnTID is discrete.

"triggered" if the specified sfcnTID is triggered.

"constant" if the specified sfcnTID is constant.

The format of sfcnTID must be the same as for LibIsSFcnSampleHit.

Note This is useful primarily in the context of S-functions that specify an
inherited sample time.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetTaskTime(tid)
This functions returns the string "ssGetTaskTime(S, tid)" otherwise.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetTaskTimeFromTID(block)
If Code Format is not Embedded-C, this functions returns the string
"RTMGet("T")"

if the block is constant or the system is single rate and

"RTMGetTaskTimeForTID(tid)" otherwise.

If Code Format is Embedded-C, this function return
"RTMGetTaskTimeForTID(tid)"

In both cases, S is the name of the SimStruct.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsContinuous(TID)
Returns 1 if the specified task identifier (TID) is continuous, 0 otherwise. Note,
TIDs equal to "triggered" or "constant" are not continuous.
8-63

8 TLC Function Library Reference

8-6
See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsDiscrete(TID)
Returns 1 if the specified task identifier (TID) is discrete, 0 otherwise. Note,
task identifiers equal to "triggered" or "constant" are not discrete.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsSFcnSampleHit(sfcnTID)
Returns 1 if a sample hit occurs for the specified local S-function task identifier
(TID), 0 otherwise.

The input argument to this function should be either

• sfcnTID: integer (e.g., 2)

For block-based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,N) with N > 1 was specified), sfcnTID is an integer
starting at 0 of the corresponding local S-function sample time.

• or sfcnTID: "InputPortIdxI", "OutputPortIdxI" (e.g., "InputPortIdx0",
"OutputPortIdx7")

For port based sample times (e.g., in S-function mdlInitializeSizes,
ssSetNumSampleTimes(S,PORT_BASED_SAMPLE_TIMES) was specified),
sfcnTID is a string giving the input (or output) port index.

Examples

• Consider a multirate S-function block with 4 block sample times. The call
LibIsSFcnSampleHit(2) will return the code to check for a sample hit on the
third S-function block sample time.

• Consider a multirate S-function block with three input and eight output
sample times. The call LibIsSFcnSampleHit("InputPortIdx0") returns the
code to check for a sample hit on the first input port. The call
LibIsSFcnSampleHit("OutputPortIdx7") returns the code to check for a
sample hit on the eighth output port.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
4

Sample Time Functions
LibIsSFcnSingleRate(block)
LibIsSFcnSingleRate returns a boolean value (1 or 0) indicating whether the
S-function is single rate (one sample time) or multirate (multiple sample
times).

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsSFcnSpecialSampleHit(sfcnSTI, sfcnTID)
Returns the Simulink macro to promote a slow task (sfcnSTI) into a faster task
(sfcnTID).

This advanced function is specifically intended for use in rate transition blocks.
This function determines the global TID from the S-function TID and calls
LibIsSpecialSampleHit using the global TIDs for both the sample time index
(sti) and the task ID (tid).

The input arguments to this function are

• For multirate S-function blocks:

sfcnSTI: local S-function sample time index (sti) of the slow task that is to
be promoted

sfcnTID: local S-function task ID (tid) of the fast task where the slow task
will be run.

• For single rate S-function blocks using SS_OPTION_RATE_TRANSITION,
sfcnSTI and sfcnTID are ignored and should be specified as "".

The format of sfcnSTI and sfcnTID must follow that of the argument to
LibIsSFcnSampleHit.

Examples

• A rate transition S-function (one sample time with
SS_OPTION_RATE_TRANSITION)
if (%<LibIsSFcnSpecialSampleHit("","")>) {

• A multirate S-function with port-based sample times where the output rate
is slower than the input rate (e.g., a zero-order hold operation)

if (%<LibIsSFcnSpecialSampleHit("OutputPortIdx0","InputPortIdx0")>) {
8-65

8 TLC Function Library Reference

8-6
See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsSingleRateModel()
Return true if model is single rate and false otherwise.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibNumAsynchronousSampleTimes()
Return the number of discrete sample times in the model.

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibNumDiscreteSampleTimes()
Return the number of discrete sample times in the model

See function in matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc.

LibPortBasedSampleTimeBlockIsTriggered(block)
Determines if the port-based S-function block is triggered.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibSetVarNextHitTime(block,tNext)
Generates code to set the next variable hit time. Blocks with variable sample
time must call this function in their output functions.

See function in matlabroot/rtw/c/tlc/lib/blocklib.tlc.

LibTriggeredTID(tid)
Returns whether this TID corresponds to a triggered rate.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.
6

Other Useful Functions
Other Useful Functions

LibBlockExecuteFcnCall(sfcnBlock, callIdx)
For use by inlined S-Functions with function call outputs. Calls
LibExecuteFcnCall but provides a simplified argument list. See
LibExecuteFcnCall for more information.

Example
%foreach callIdx = NumSFcnSysOutputCalls
%if LibIsEqual(SFcnSystemOutputCall[callIdx].BlockToCall,...
"unconnected")
%continue

%endif
%% call the downstream system
%<LibBlockExecuteFcnCall(block, callIdx)>\

%endforeach

Returns a string to either call function-call subsystem with the appropriate
number of arguments or the generate the subsystem's code right there
(inlined).

See function in matlabroot/rtw/c/tlc/lib/asynclib.tlc.

LibCallFCSS(system, simObject, portEl, tidVal)
For use by inlined S-functions with function call outputs. Returns a string to
call the function-call subsystem with the appropriate number of arguments or
generates the subsystem’s code in place (inlined).

Note An S-function can execute a function-call subsystem only via its first
output port.

See the SFcnSystemOutputCall record in the model.rtw file.

The return string is determined by the current code format.

Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
8-67

8 TLC Function Library Reference

8-6
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%assign sysToCall = System[ssBlock.ParamSettings.SystemIdx]
%<LibCallFCSS(sysToCall, tSimStruct, FcnPortElement, ...
ParamSettings.SampleTimesToSet[0][1])>\

%endwith
%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record. System is a record within the global CompiledModel record.

This example is from the file
matlabroot/toolbox/simulink/blocks/tlc_c/fcncallgen.tlc.

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.

LibDisableFCSS(system, simObject, portEl, tidVal)
For use by inlined S-Functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or the generate the subsystem's code right there (inlined).

Note Used by inlined S-functions to make a function-call, LibCallFCSS
returns the call to the function-call subsystem with the appropriate number of
arguments or the inlined code. An S-function can execute a function-call
subsystem only via its first output port.

See the SFcnSystemOutputCall record in the model.rtw file.

The return string is determined by the current code format.
8

Other Useful Functions
Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%assign sysToCall = System[ssBlock.ParamSettings.SystemIdx]
%<LibCallFCSS(sysToCall, tSimStruct, FcnPortElement, ...

ParamSettings.SampleTimesToSet[0][1])>\
%endwith

%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record.

System is a record within the global CompiledModel record.

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.

LibEnableFCSS(system, simObject, portEl, tidVal)
For use by inlined S-Functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or the generate the subsystem's code right there (inlined).

Note Used by inlined S-functions to make a function-call, LibCallFCSS
returns the call to the function-call subsystem with the appropriate number of
arguments or the inlined code. An S-function can execute a function-call
subsystem only via its first output port.

See the SFcnSystemOutputCall record in the model.rtw file. The return string
is determined by the current code format.
8-69

8 TLC Function Library Reference

8-7
Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%assign sysToCall = System[ssBlock.ParamSettings.SystemIdx]
%<LibCallFCSS(sysToCall, tSimStruct, FcnPortElement, ...
ParamSettings.SampleTimesToSet[0][1])>\

%endwith
%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record. System is a record within the global CompiledModel record.

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.

LibExecuteFcnCall(ssBlock, portEl, tidVal)
For use by inlined S-Functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or the generate the subsystem's code right there (inlined).

Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%<LibExecuteFcnCall(ssBlock, FcnPortElement, ...
0

Other Useful Functions
 ParamSettings.SampleTimesToSet[0][1])>\
%endwith

%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record.

This example is from the file:

matlabroot/toolbox/simulink/blocks/tlc_c/fcncallgen.tlc

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.

LibExecuteFcnDisable(ssBlock, portEl, tidVal)
For use by inlined S-Functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or the generate the subsystem's code right there (inlined).

Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%<LibExecuteFcnCall(ssBlock, FcnPortElement, ...
ParamSettings.SampleTimesToSet[0][1])>\

%endwith
%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record.

This example is from the file:

matlabroot/toolbox/simulink/blocks/tlc_c/fcncallgen.tlc

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.
8-71

8 TLC Function Library Reference

8-7
LibExecuteFcnEnable(ssBlock, portEl, tidVal)
For use by inlined S-Functions with function call outputs. Returns a string to
either call function-call subsystem with the appropriate number of arguments
or the generate the subsystem's code right there (inlined).

Example
%foreach fcnCallIdx = NumSFcnSysOutputCalls
%% call the downstream system
%with SFcnSystemOutputCall[fcnCallIdx]

%% skip unconnected function call outputs
%if ISEQUAL(BlockToCall, "unconnected")
%continue

%endif
%assign sysIdx = BlockToCall[0]
%assign blkIdx = BlockToCall[1]
%assign ssBlock = System[sysIdx].Block[blkIdx]
%<LibExecuteFcnCall(ssBlock, FcnPortElement, ...
ParamSettings.SampleTimesToSet[0][1])>\

%endwith
%endforeach

BlockToCall and FcnPortElement are elements of the SFcnSystemOutputCall
record.

This example is from the file:

matlabroot/toolbox/simulink/blocks/tlc_c/fcncallgen.tlc

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.

LibGenConstVectWithInit(data, typeId, varId)
Return an initialized static constant variable string of form:

static const typeName varId[] = { data };

The typeName is generated from typeId which can be one of:

tSS_DOUBLE, tSS_SINGLE, tSS_BOOLEAN, tSS_INT8, tSS_UINT8,
tSS_INT16, tSS_UINT16, tSS_INT32, tSS_UINT32,

The data input argument must be a numeric scalar or vector and must be finite
(no Inf, -Inf, or NaN values).
2

Other Useful Functions
See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibGetBlockAttribute(block,attr)
Get a field value inside a Block record.

Call syntax
%if LibIsEqual(LibGetBlockAttribute(ssBlock,"MaskType"), ...
"Task Block")
%assign isTaskBlock = 1

%endif

Returns
Returns the value of the attribute(field) or empty string if it doesn't exist.

See function in matlabroot/rtw/c/tlc/lib/asynclib.tlc.

LibGetCallerClockTickCounter(sfcnBlock)
For use by Async S-Functions with function call outputs. Asynchronous tasks
can manage their own time. This function is used to access a upstream
asynchrounous task's time counter. This is preferred when being driven by
another asynchronous rate (e.g. Interrupt Block driving a Task block) asthe
time the interrupt occurred will be used as apposed to the time the Task is
allowed to run.

Example
%if LibNeedAsyncCounter(block,0)
/* Use the upstream clock tick counter for this Task. */
%<LibSetAsyncCounter(block,0, ...
LibGetCallerClockTickCounter(block))>\

%endif

Returns
Returns a string for the counter variable for the upstream asynchronous task.

See function in matlabroot/rtw/c/tlc/lib/asynclib.tlc.
8-73

8 TLC Function Library Reference

8-7
LibGetDataTypeComplexNameFromId(id)
Returns the name of the complex data type corresponding to a data type ID. For
example, if id == tSS_DOUBLE then this function returns "creal_T".

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibGetDataTypeEnumFromId(id)
Returns the data type enum corresponding to a data type ID. For example id ==
tSS_DOUBLE => enum = "SS_DOUBLE". If id does not correspond to a built-in
data type, this function returns "".

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibGetDataTypeIdAliasedThruToFromId(id)
 Return the data type IdAliasedThruTo corresponding to a data type ID.

 See function in matlabroot/rtw/c/tlc/dtypelib.tlc.

LibGetDataTypeIdAliasedToFromId(id)
Return the data type IdAliasedTo corresponding to a data type ID.

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibGetDataTypeIdResolvesToFromId(id)
Return the data type IdResolvesTo corresponding to a data type ID.

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibGetDataTypeNameFromId(id)
Returns the data type name corresponding to a data type ID.

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibGetDataTypeStorageIdFromId(id)
Return the data type StorageId corresponding to a data type ID.

See function in matlabroot/rtw/c/tlc/dtypelib.tlc.
4

Other Useful Functions
LibGetT()
Return a string to access the absolute time. You should only use this function
to access time.

This function is the TLC version of the SimStruct macro: ssGetT.

See function in matlabroot/rtw/c/tlc/utillib.tlc.

LibIsMajorTimeStep()
Returns a string to access whether the current simulation step is a major time
step.

This function is the TLC version of the SimStruct macro: ssIsMajorTimeStep

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsMinorTimeStep()
Returns a string to access whether the current simulation step is a minor time
step.

This function is the TLC version of the SimStruct macro ssIsMinorTimeStep

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsComplex(arg)
Returns 1 if the argument passed in is complex, 0 otherwise.

See function in matlabroot/rtw/c/tlc/lib/utillib.tlc.

LibIsFirstInitCond(s)
LibIsFirstInitCond returns generated code intended for placement in the
initialization function. This code determines, during run-time, whether the
initialization function is being called for the first time.

This function also sets a flag that tells Real-Time Workshop if it needs to
declare and maintain the first-initialize-condition flag.

This function is the TLC version of the SimStruct macro, ssIsFirstInitCond.

See function in matlabroot/rtw/c/tlc/lib/syslib.tlc.
8-75

8 TLC Function Library Reference

8-7
LibMaxIntValue(dtype)
For a built-in integer data type, this function returns the formatted maximum
value of that data type.

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc .

LibMinIntValue(dtype)
For a built-in integer data type, this function returns the formatted minimum
value of that data type.

See function in matlabroot/rtw/c/tlc/lib/dtypelib.tlc.

LibNeedAsyncCounter(sfcnBlock,callIdx)
For use by Async S-Functions with function call outputs. Asynchronous tasks
can manage their own time and used this function to determine if there is a
need to do.

Example
%if LibNeedAsyncCounter(block,0)
%<LibSetAsyncCounter(block,0), "tickGet()")>

Returns
Returns TLC_TRUE if a asynchronous counter is needed, otherwise TLC_FALSE.

See function in matlabroot/rtw/c/tlc/lib/asynclib.tlc.

LibSetAsyncCounter(sfcnBlock,callIdx,buf)
For use by Async S-Functions with function call outputs. Asynchronous tasks
can manage their own time and use this function to return the counter variable
that is to be maintained by the asynchronous task.

Example
%if LibNeedAsyncCounter(block,0)
%<LibSetAsyncCounter(block,0), "tickGet()")>

Returns
Returns a string for the counter variable for the asynchronous task.
6

Other Useful Functions
See function in matlabroot/rtw/c/tlc/lib/asynclib.tlc.
8-77

8 TLC Function Library Reference

8-7
Advanced Functions

LibBlockInputSignalBufferDstPort(portIdx)
Returns the output port corresponding to input port (portIdx) that share the
same memory, otherwise (-1) is returned. You will need to use this function
when you specify ssSetInputPortOverWritable(S,portIdx,TRUE) in your
S-function.

If an input port and some output port of a block are

• Not test points, and

• The input port is overwritable

then the output port might reuse the same buffer as the input port. In this case,
LibBlockInputSignalBufferDstPort returns the index of the output port that
reuses the specified input port’s buffer. If none of the block’s output ports reuse
the specified input port buffer, then this function returns -1.

This function is the TLC version of the Simulink macro
ssGetInputPortBufferDstPort.

Example
Assume you have a block that has two input ports, both of which receive a
complex number in 2-wide vectors. The block outputs the product of the two
complex numbers.

%assign u1r = LibBlockInputSignal (0, "", "", 0)
%assign u1i = LibBlockInputSignal (0, "", "", 1)
%assign u2r = LibBlockInputSignal (1, "", "", 0)
%assign u2i = LibBlockInputSignal (1, "", "", 1)
%assign yr = LibBlockOutputSignal (0, "", "", 0)
%assign yi = LibBlockOutputSignal (0, "", "", 1)

%if (LibBlockInputSignalBufferDstPort(0) != -1)
%% The first input is going to get overwritten by yr so
%% we need to save the real part in a temporary variable.
{
real_T tmpRe = %<u1r>;

%assign u1r = "tmpRe";
%endif
8

Advanced Functions
%<yr> = %<u1r> * %<u2r> - %<u1i> * %<u2i>;
%<yi> = %<u1r> * %<u2i> + %<u1i> * %<u2r>;

%if (LibBlockInputSignalBufferDstPort(0) != -1)
}

%endif

Note that this example could have equivalently used
(LibBlockInputSignalBufferDstPort(0) == 0) as the Boolean condition for
the %if statements since there is only one output port.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalStorageClass(portIdx, idx)
Returns the storage class of the specified block input port signal. The storage
class can be "Auto", "ExportedSignal", "ImportedExtern", or
"ImportedExternPointer".

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockInputSignalStorageTypeQualifier(portIdx,
idx)
Returns the storage type qualifier of the specified block input port signal. The
type qualifier can be anything entered by the user such as "const". The default
type qualifier is "Auto", which means do the default action.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalIsGlobal(portIdx)
Returns 1 if the specified block output port signal is declared in the global
scope, otherwise returns 0.

If this function returns 1, then the variable holding this signal is accessible
from any where in generated code. For example, this function returns 1 for
signals that are test points, external or invariant.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.
8-79

8 TLC Function Library Reference

8-8
LibBlockOutputSignalIsInBlockIO(portIdx)
Returns 1 if the specified block output port exists in the global Block I/O data
structure. You may need to use this if you specify
ssSetOutputPortReusable(S,portIdx,TRUE) in your S-function.

See matlabroot/toolbox/simulink/blocks/tlc_c/sfun_multiport.tlc.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalIsValidLValue(portIdx)
Returns 1 if the specified block output port signal can be used as a valid
left-side argument (lvalue) in an assignment expression, otherwise returns 0.
For example, this function returns 1 if the block output port signal is in
read/write memory.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalStorageClass(portIdx)
Returns the storage class of the block’s specified output signal. The storage
class can be "Auto", "ExportedSignal", "ImportedExtern", or
"ImportedExternPointer".

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockOutputSignalStorageTypeQualifier(portIdx)
Returns the storage type qualifier of the block’s specified output signal. The
type qualifier can be anything entered by the user such as "const". The default
type qualifier is "Auto", which means do the default action.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockSrcSignalBlock(portIdx, idx)
Returns a reference to the block that is source of the specified block input port
element. The return argument is one of the following.

[systemIdx, blockIdx] If unique block output or block state

"ExternalInput" If external input (root inport)

"Ground" If unconnected or connected to ground
0

Advanced Functions
Example
The following code fragment finds the block that drives the second input on the
first port of the current block, then, assigns the input signal of this source block
to the variable y:

%assign srcBlock = LibBlockSrcSignalBlock(0, 1)
%% Make sure that the source is a block
%if TYPE(srcBlock) == "Vector"
%assign sys = srcBlock[0]
%assign blk = srcBlock[1]
%assign block = CompiledModel.System[sys].Block[blk]
%with block

%assign u = LibBlockInputSignal(0, "", "", 0)
y = %<u>;

%endwith
%endif

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockSrcSignalIsDiscrete(portIdx, idx)
Returns 1 if the source signal corresponding to the specified block input port
element is discrete, otherwise returns 0.

Note that this function also returns 0 if the driving block cannot be uniquely
determined if it is a merged or reused signal (i.e., the source is a Merge block
or the signal has been reused due to optimization).

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockSrcSignalIsGlobalAndModifiable(portIdx,
idx)
This function returns 1 if the source signal corresponding to the specified block
input port element satisfies the following three conditions:

• It is readable everywhere in the generated code.

"FcnCall" If function-call output

0 If not unique (i.e., source for a Merge block or a
reused signal due to block I/O optimization)
8-81

8 TLC Function Library Reference

8-8
• It can be referenced by its address.

• Its value can change (i.e., it is not declared as a “const”).

Otherwise, this function returns 0.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibBlockSrcSignalIsInvariant(portIdx, idx)
Returns 1 if the source signal corresponding to the specified block input port
element is invariant (i.e., the signal does not change).

For example, a source block with a constant TID (or equivalently, an infinite
sample time) would output an invariant signal.

See function in matlabroot/rtw/c/tlc/lib/blkiolib.tlc.

LibCreateHomogMathFcnRec(FcnName, FcnTypeId)
See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibGetMathConstant(ConstName,ioTypeId)
Return a valid math constant expression with the proper datatype.

This function can only be called after funclib.tlc is included.

See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibMathFcnExists(RTWFcnName, RTWFcnTypeId)
Return whether or not an implementation function exists for a given generic
operation (function), given the specified function prototype.

See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.

LibSetMathFcnRecArgExpr(FcnRec, idx, argStr)
See function in matlabroot/rtw/c/tlc/lib/mathlib.tlc.
2

A

TLC Error Handling

TLC Error Messages (p. A-5) Use the %exit directive to generate errors from TLC files

TLC Function Library Error Messages
(p. A-30)

Messages are sufficiently self-descriptive so that they do
not need additional explanation

A TLC Error Handling

A-2
Generating Errors from TLC-Files
To generate errors from TLC files, use the %exit directive, but preferably one
of the library functions described below that calls %exit for you. The two types
of errors are

Usage Errors
Usage errors are errors resulting from incorrect models or attributes defined
on a model. For example, suppose you have an S-Function block and an inline
TLC file for a specific D/A device. If a model can contain only one copy of this
S-function, then an error needs to be generated for a model that contains two
copies of this S-Function block.

Using Library Functions
To generate usage errors related to a specific block, use the library function:

LibBlockReportError(block,"error string")

The block argument is the block record if it isn’t scoped. If the block is
currently scoped, then you can specify block as [].

To generate general usage errors that are not related to a specific block, use

LibReportError("error string")

These library functions prepend the string Real-Time Workshop Error to the
message you provide when reporting the error.

For an example usage of these functions, refer to gensfun.tlc for block errors
and commonsetup.tlc for common errors. There are other files that use these
functions in the TLC source directories within matlabroot/rtw/c/tlc.

Fatal (Internal) TLC Coding Errors
Suppose you have an S-function that has a local function that can accept only
numerical numbers. You may want to add an assert requiring that the inputs
be only numerical numbers. These asserts indicate fatal coding errors in that

Usage errors These can be caused by incorrect models.

Internal coding errors These cannot be caused by incorrect models.

Generating Errors from TLC-Files
the user has no way of building a model or specifying attributes that can cause
the error to occur.

Using Library Functions
The two available library functions are

LibBlockReportFatalError(block,"fatal coding error message")

where block is the offending block record (or [] if the block is already scoped),
and

LibReportFatalError("fatal coding error message")

for error messages that are not block specific. For example, to add assert code
you could use

%if TYPE(argument) != "Number"
%<LibBlockReportFatalError(block,"unexpected argument type")

%endif

These library functions prepend the string Real-Time Workshop Fatal to the
message you provide and display the call stack when reporting the error.

For an example usage of these functions, refer to gensfun.tlc for block errors
and commonsetup.tlc for common errors. There are other files that use these
functions in the directory matlabroot/rtw/c/tlc.

Using %exit
You can call %exit to generate fatal error messages, however, it is suggested
that you use one of the previously discussed library functions. If you do use
%exit, take care when generating an error string containing new lines
(carriage returns); See “Formatting Error Messages” on page A-4.

When generating fatal error messages directly with %exit, it is good practice
to give a stack trace with the error message. This lets you see the call chain of
functions that caused the error. To generate a stack trace, generate the
message using the format

%setcommandswitch "-v1"
%exit RTW Fatal: error string
A-3

A TLC Error Handling

A-4
Formatting Error Messages
You should be careful when formatting error message strings. For example,
suppose you create a local variable (called message) that contains text that has
new lines.

%openfile message
My message text
with new lines (carriage returns)
%closefile message

If you then want to create another variable and prefix this message with the
text “RTW Error:”, you need to use

%openfile errorMessage
RTW Error: %<message>
%closefile errorMessage

or

%assign errorMessage = "RTW Error:"+ message

The statement

%assign errorMessage = "RTW Error: %<message>"

will cause a syntax error during TLC execution and your message will not be
displayed. This should be avoided. Use the function LibBlockReportError to
help prevent this type of runtime syntax error. The syntax error occurs because
TLC evaluates the message, which causes new lines to appear in the
assignment statement that appear as unterminated text strings (i.e., the
trailing quote is missing).

After formatting your error message, use LibBlockReportError, a similar
function, or %exit to report your error when it occurs.

Testing Error Messages
It is strongly suggested that you test your error messages before releasing your
new TLC code. To test your error messages, copy the relevant code into a
test.tlc file and run

tlc test.tlc

at the MATLAB prompt.

TLC Error Messages
TLC Error Messages
This section lists and describes error messages generated by the Target
Language Compiler (tlc.mex). Use this reference to

• Confirm that an error has been reported.

• Determine possible causes for an error.

• Determine possible ways to correct an error.

%closefile or %selectfile or %flushfile argument must be a valid open file
When using %closefile or %selectfile or %flushfile, the argument must be
a valid file variable opened with %openfile.

%define no longer supported, use %function instead
Macros are no longer supported. You must rewrite all macros as functions or
inline them in your code.

%error directive: text
Code containing the %error directive generates this message. It normally
indicates some condition that the code was unable to handle and displays the
text following the %error directive.

%exit directive: text
Code containing the %exit directive causes this message. It typically indicates
some condition that the code was unable to handle and displays the text
following the %exit directive. Note that this directive causes the Target
Language Compiler to terminate regardless of the -mnumber command line
option.

%filescope has already been used in this file.
The user attempted to use the %filescope directive more than once in a file.

%trace directive: text
The %trace directive produces this error message and displays the text
following the %trace directive. Trace directives are only reported when the -v
option (verbose mode) appears on the command line. Note that %trace
A-5

A TLC Error Handling

A-6
directives are not considered errors and do not cause the Target Language
Compiler to stop processing.

%warning directive: %s
The %warning directive produces this error message and displays the text
following the %warning directive. Note that %warning directives are not
considered errors and do not cause the Target Language Compiler to stop
processing.

A %implements directive must appear within a block template file and
must match the %language and type specified
A block template file was found, but it did not contain a %implements directive.
A %implements directive is required to ensure that the correct language and
type are implemented by this block template file. See “Object-Oriented Facility
for Generating Target Code” on page 5-34 for more information.

A %switch statement can only have one %default
The user has written a %switch statement with multiple %default cases, as in
the following example:

%switch expr
 %case 1
 code...
 %break
 %default

more code...
 %break
 %default %% error
 even more code...
 %break
%endswitch

A language choice must be made using the %language directive prior to
using GENERATE or GENERATE_TYPE
To use the GENERATE or GENERATE_TYPE built-in functions, the Target Language
Compiler requires that you first specify the language being generated. It does
this to ensure that the block-level target file implements the same language
and type as specified in the %language directive.

TLC Error Messages
A non-homogenous vector was passed to GENERATE_FORMATTED_VALUE
The builtin GENERATE_FORMATTED_VALUE can only process vectors which have
homogenous elements (that is, vectors in which all the elements have the same
type).

Ambiguous reference to identifier — must use array index to refer to one
of multiple scopes
When using a repeated scope identifier from a database file, you must specify
an index in order to disambiguate the reference. For example:

Database file:
block
{

Name "Abc2"
Parameter {

Name "foo"
Value 2

}
}
block
{

Name "Abc3"
Parameter {

Name "foo"
Value 3

}
}

TLC file:
%assign y = block

In this example, the reference to block is ambiguous because multiple repeated
scopes named “block” appear in the database file. Use an index to disambiguate
it, as in

%assign y = block[0]

An %if statement can only have one %else
The user has written an %if statement with multiple %else blocks, as in the
following example.
A-7

A TLC Error Handling

A-8
%if expr
 code...
%else
 more code...
%else %% error
 even mode code...
%endif

Argument to identifier must be a string
The following built-in functions expect a string and report this error if the
argument passed is not a string.

Arguments to directive must be records
Arguments to %mergerecord and %copyrecord must be records. Also, the first
argument to the following builtins must be records:

• ISALIAS
• REMOVEFIELD
• FIELDNAMES
• ISFIELD

• GETFIELD

• SETFIELD.

Arguments to TLC from the MATLAB command line must be strings
An attempt was made to invoke the Target Language Compiler from MATLAB
and some of the arguments that were passed were not strings.

CAST GENERATE_FILENAME

EXISTS GENERATE_FUNCTION_EXISTS

FEVAL GENERATE_TYPE

FILE_EXISTS GET_COMMAND _SWITCH

FORMAT IDNUM

GENERATE SYSNAME

TLC Error Messages
Assertion failed
An expression in an %assert statement evaluated to false.

Assignment to scope identifier is only allowed when using the + operator
to add members
Scope assignment must be scope = scope + variable.

Attempt to define a function identifier on top of an existing variable or
function
A function cannot be defined twice. Make sure that you don’t have the same
function defined in separate TLC files.

Attempt to divide by zero
The Target Language Compiler does not allow division by zero.

Bad cast - unable to cast this expression to "type"
The Target Language Compiler does not know how to cast this expression from
its current type to the specified type. For example, the Target Language
Compiler is not able to cast a string to a number as in

%assign x = "1234"
%assign y = CAST("Number", x);

Bad directory (dirname) in O: filename
The -O option was not a valid directory.

builtin was expecting expression of type type, got one of type type
A builtin was passed an expression of incorrect type.

Cannot %undef any builtin functions or variables
User is not allowed to %undef any TLC builtins or variables, for example

%undef FORMAT %% error

Cannot convert string your_string to a number
Cannot convert the string to a number.
A-9

A TLC Error Handling

A-1
Changing value of identifier from the RTW file
You have overwritten the value that appeared in the RTW file.

Error opening "filename"
The Target Language Compiler could not open the file specified on the
command line.

Error writing to file "error"
There was an error while writing to the current output stream. "error" will
contain the system specific error message.

Errors occurred — aborting
This error message is always the last error to be reported. It occurs when:

• The number of error messages exceeds the error message threshold
(5 by default), or

• Processing completes and errors have occurred.

Expansion directives %<> cannot be nested
It is illegal to nest expansion directives. For example:

%<foo(%<expr>)>

Instead, do the following:

%assign tmp = %<expr>
%<foo(tmp)>

Expansion directives %<> cannot span multiple lines; use \ at end of line
An expansion directive cannot span multiple lines. To work around this
restriction, use the \ line continuation character. For example,

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name +
"Hello">

is illegal, whereas

%<CompiledModel.System[Sysidx].Block[BlkIdx].Name + \
"Hello">

is correct.
0

TLC Error Messages
Extra arguments to the function-name built-in function were ignored
(Warning)
The following built-in functions report this warning when too many arguments
are passed to them.

File name too long (directory = 'dirname', name = 'filename')
The specified filename was too long. The default limits are 256 characters for
filename and 1024 characters for pathname, but the limits may be larger
depending on the platform.

format is not a legal format value
The specified format was not legal for the %realformat directive. Valid format
strings are "EXPONENTIAL" and "CONCISE".

Function argument mismatch; function function_name expects number
arguments
When calling a function, too many or too few arguments were passed to it.

CAST NUMTLCFILES

EXISTS OUTPUT_LINES

FILE_EXISTS SIZE

FORMAT STRING

GENERATE_FILENAME STRINGOF

GENERATE_FUNCTION_EXISTS SYSNAME

IDNUM TLCFILES

ISFINITE TYPE

ISINF WHITE_SPACE

ISNAN WILL_ROLL
A-11

A TLC Error Handling

A-1
Function reached the end and did not return a value
Functions that are not declared as void or Output must return a value. If a
return value is not desired, declare the function as void, otherwise ensure that
it always returns a value.

Function values are not allowed
Attempt to use a TLC function as a variable.

Identifier identifier multiply defined. Second and succeeding definitions
ignored.
The user is attempting to add the same field to a record more than once, as in
the following code.

%createrecord err { foo 1; rec { val 2 } }
%addtorecord err foo 2 %% error

Identifier identifier used on a %foreach statement was already in scope
(Warning)
The argument to a %foreach statement cannot be defined prior to entering the
%foreach.

Illegal use of eval (i.e. %<...>)
It is illegal to use evals in .rtw files. There are also some places where evals
are not allowed in directives, for example

%function %<foo>(a, b, c) void %% error
%endfunction

Indices may not be negative
An index used in a [] expression must be a nonnegative integer.

Indices must be constant integral numbers
An index used in a [] expression must be an integral number.

Invalid handle
An invalid handle was passed to the Target Language Compiler Server Mode.
2

TLC Error Messages
Invalid identifier range, the leading strings string1 and string2 must
match
When using a range of signals, for example, u1:u10, the identifier in the first
argument did not match the identifier in the second.

Invalid identifier range, the lower bound (%d) must be less than the upper
bound (%d)
When using a range of signals, for example, u1:u10, the lower bound was
higher than the upper bound.

Invalid type for unary operator
Unary operators - and + require numeric types. Unary operator ~ requires an
integral type. Unary operator ! requires a numeric type.

Invalid type type
An invalid type was passed to a built-in function.

It is illegal to return a function from a function
A function value cannot be returned from a function call.

Named value identifier already exists within this scope-identifier; use
%assign to change the value
You cannot use the block addition operator + to add a value that is already a
member of the indicated block. Use %assign to change the value of an existing
value. This example produces this error:

%assign x = BLK { a 1; b 2 }
%assign a = 3
%assign x = x + a

Use this instead:

%assign x.a = 3

No %case statement(s) seen yet, statement ignored.
Statements that appear inside a %switch statement, but precede any %case
statements, are ignored, as in the following code.

%switch expr
A-13

A TLC Error Handling

A-1
%assign x = 2 %% this statement will be ignored
 %case 1
 code
 %break
%endswitch

Only double and character arrays can be converted from MATLAB to TLC.
This can occur if the MATLAB function does not return a value (see
%matlab).
Only double and character arrays can be converted from MATLAB to the
Target Language Compiler. This error can occur if the MATLAB function does
not return a value (see %matlab). For example:

%assign a = FEVAL(“int8“,3)
%matlab disp(a)

Only one output is allowed from the TLC
An attempt was made to receive multiple outputs from the MATLAB version of
the Target Language Compiler.

Only strings of length 1 can be assigned using the [] notation
The right-hand side of a string assignment using the [] operator must be a
string of length 1. You can only replace a single character using this notation.

Only strings or cells of strings may be used as the argument to Query and
ExecString
A cell containing nonstring data was passed as the third argument to Query or
ExecString in Server Mode.

Only vectors of the same length as the existing vector value can be
assigned using the [] notation
When using the [] notation to replace a row of a matrix, the row must be a
vector of the same length as the existing rows.

Output file identifier opened with %openfile was not closed
Output files opened with %openfile must be closed with %closefile.
identifier is the name of the variable specified in the %openfile directive.
4

TLC Error Messages
Note This might also occur if there is a syntax error in your code section
between an openfile and closefile, or if you try to assign the output of a
function of type void or Output to a variable.

Ranges, identifier ranges, and repeat values cannot be repeated
You cannot repeat a range, idrange, or repeat value. This prevents things like
[1@2@3].

String cannot modify the setting for the command line switch '-switch'
%setcommandswitch does not recognize the specified switch, or cannot modify
it (e.g., -r cannot be modified).

'String' is not a recognized user defined property of this handle
The query performed on a TLC server mode handle is looking for an undefined
property.

Syntax error
The indicated line contains a syntax error, See “Directives and Built-in
Functions” on page 5-1 for information on the syntax.

The %break directive can only appear within a %foreach, %for, %roll, or
%switch statement
The %break directive can only be used in a %foreach, %for, %roll, or %switch
statement.

The %case and %default directives can only be used within the %switch
statement
A %case or %default directive can only appear within a %switch statement.

The %continue directive can only appear within a %foreach, %for, or %roll
statement
The %continue directive can only be used in a %foreach, %for, or %roll
statement.
A-15

A TLC Error Handling

A-1
The %foreach statement expects a constant numeric argument
The argument of a %foreach must be a numeric type. For example,

%foreach Index = [1 2 3 4]
…
%endforeach

%foreach cannot accept a vector as input.

The %if statement expects a constant numeric argument
The argument of a %if must be a numeric type. For example:

%if [1 2 3]
…
%endif

%if cannot accept a vector as input.

The %implements directive expects a string or string vector as the list of
languages
You can use the %implements directive to specify a string for the language
being implemented, or to indicate that it implements multiple languages by
using a vector of strings. You cannot specify any other argument type to the
%implements directive.

The %implements directive specifies type as the type where type was
expected
The type specified in the %implements directive must exactly match the type
specified in the block or on the GENERATE_TYPE directive. If you want to specify
that the block accept multiple input types, use the %implements * directive, as
in

%implements * "C" %% I accept any type and generate C code

The %implements language does not match the language currently being
generated (language)
The language or languages specified in the %implements directive must exactly
match the %language directive.
6

TLC Error Messages
The %return statement can only appear within the body of a function
A %return statement can only be in the body of a function.

The == and != operators can only be used to compare values of the same
type
The == and != operator arguments must be the same type. You can use the
CAST() built-in function to change them into the same type.

The argument for %openfile must be a valid string
When opening an output file, the name of the file must be a valid string.

The argument for %with must be a valid scope
The argument to %with must be a valid scope identifier. For example:

%assign x = 1
%with x
…
%endwith

In this code, the %with statement argument is a number and produces this
error message.

The argument for an [] operation must be a repeated scope symbol, a
vector, or a matrix
When using the [] operator to index, the expression on the left of the brackets
must be a vector, matrix, string, numeric constant, or a repeated scope
identifier. When using array indexing on a scalar, the constant is automatically
scalar expanded and the value of the scalar is returned. For example:,

%openfile x
%assign y = x[0]

This example would cause this error because x is a file and is not valid for
indexing.

The argument to %addincludepath must be a valid string
The argument to %addincludepath must be a string.
A-17

A TLC Error Handling

A-1
The argument to %include must be a valid string
The argument to the input file control directive must be a valid string with the
filename given in double quotes.

The begin directive must be in the same file as the corresponding end
directive.
These Target Language Compiler begin directives must appear in the same file
as their corresponding end directives: %function, %switch, %foreach, %roll,
and %for. Place the construct entirely within one Target Language Compiler
source file.

The begin directive on this line has no matching end directive
For block-scoped directives, this error is produced if there is no matching end
directive. This error can occur for the following block-scoped Target Language
Compiler directives.

The error is reported on the line that opens the scope and has no matching end
scope.

Begin
Directive

End
Directive

Description

%if %endif Conditional inclusion

%for %endfor Looping

%foreach %endforeach Looping

%roll %endroll Loop rolling

%with %endwith Scoping directive

%switch %endswitch Switch directive

%function %endfunction Function declaration directive

{ } Record creation
8

TLC Error Messages
Note Nested scopes must be closed before their parent scopes. Failure to
include an end for a nested scope often causes this error, as in

%if Block.Name == "Sin 3"
%foreach idx = Block.Width

%endif %% Error reported here that the %foreach was not terminated

The construct %matlab function_name(...) construct is illegal in standalone
tlc
You cannot call MATLAB from stand-alone TLC.

The FEVAL() function can accept only 2-dimensional arrays from MATLAB,
not number dimensions
Return values from MATLAB can have at most two dimensions.

The FEVAL() function can accept vectors of numbers or strings only when
calling MATLAB
Vectors passed to MATLAB can be numbers or strings. See “FEVAL Function”
on page 5-47.

The FEVAL() function requires the name of a function to call
FEVAL requires a function to call. This error only appears inside MATLAB.

The final argument to %roll must be a valid block scope
When using %roll, the final argument (prior to extra user-specified
arguments) must be a valid block scope. See %roll for a complete description
of this command.

The first argument of a ? : operator must be a Boolean expression
The ? : operator must have a Boolean expression as its first operand.
A-19

A TLC Error Handling

A-2
The first argument to GENERATE or GENERATE_TYPE must be a valid scope
When calling GENERATE or GENERATE_TYPE, the first argument must be a valid
scope. See the GENERATE and GENERATE_TYPE functions for more information
and examples.

The function name requires at least number arguments
User is passing too few arguments to a function, as in the following code:

%function foo(a, b, c)
 %return a + b + c
%endfunction

%<foo(1, 2)> %% error

The GENERATE function requires at least 2 arguments
When calling the GENERATE built-in function, the first two arguments must be
the block and the name of the function to call.

The GENERATE_TYPE function requires at least 3 arguments
When calling the GENERATE_TYPE built-in function, the first three arguments
must be the block, the name of the function to call, and the type.

The ISINF(), ISNAN(), ISFINITE(), REAL(), and IMAG() functions expect a
real or complex valued argument
These functions expect a Real or complex value as the input argument.

The language being implemented cannot be changed within a block
template file
You cannot change the language using the %language directive within a block
template file.

The language being implemented has changed from old-language to
new-language (Warning)
The language being implemented should not be changed in midstream because
GENERATE function calls that appear prior to the %language directive may cause
generate functions to load for the prior language. Only one language directive
should appear in a given file.
0

TLC Error Messages
The left-hand side of a . operator must be a valid scope identifier
When using the . operator, the left-hand side of the . operator must be a valid
in-scope identifier. For example,

%assign x = 1
%assign y = x.y

In this code, the reference to x.y produces this error message because x is not
defined as a scope.

The left-hand side of an assignment must be a simple expression
comprised of ., [], and identifiers
Illegal left-hand side of assignment.

The number of columns specified (specified-columns) did not match the
actual number of columns in all of the rows (actual-columns)
When specifying a Target Language Compiler matrix, the number of columns
specified did not match the actual number of columns in the matrix. For
example,

%assign mat = Matrix(2,1) [[1,2];[2,3]]

In this case, the number of columns in the declaration of the matrix (1) did not
match the number of columns seen in the matrix (2). Either change the number
of columns in the matrix, or change the matrix declaration.

The number of rows specified (specified-rows) did not match the actual
number of rows seen in the matrix (actual-rows)
When specifying a Target Language Compiler matrix, the number of rows
specified did not match the actual number of rows in the matrix. For example,

%assign mat = Matrix(1,2) [[1,2];[2,3]]

In this case, the number of rows in the declaration of the matrix (1) did not
match the number of rows seen in the matrix (2). Either change the number of
rows in the matrix or change the matrix declaration.

The operator_name operator only works on Boolean arguments
The && and || operators work on Boolean values only.
A-21

A TLC Error Handling

A-2
The operator_name operator only works on integral arguments
The &, ^, |, <<, >> and % operators only work on numbers.

The operator_name operator only works on numeric arguments
The arguments to the following operators both must be either Number or Real:
<, <=, >, >=, -, *, /. This can also happen when using + as an unary operator. In
addition, the FORMAT built-in function expects either a Number or Real
argument.

The return value from the RollHeader function must be a string
When using %roll, the RollHeader() function specified in Roller.tlc must
return a string value. See %roll for a complete discussion of the %roll
construct.

The roll argument to %roll must be a nonempty vector of numbers or
ranges
When using %roll, the roll vector cannot be empty and must contain numbers
or ranges of numbers. See %roll for a complete discussion of the %roll
construct.

The second value in a Range must be greater than the first value
When using a range, for example, 1:10, the lower bound was higher than the
upper bound.

The specified index (index) was out of the range
0 - number-of-elements – 1
This error occurs when indexing into any nonscalar beyond the end of the
variable. For example:

%assign x = [1 2 3]
%assign y = x[3]

This example would cause this error. Remember, in the Target Language
Compiler, array indices start at 0 and go to the number of elements minus 1.
2

TLC Error Messages
The STRINGOF built-in function expects a vector of numbers as its
argument
The STRINGOF function expects a vector of numbers. The function treats each
number as the ASCII value of a valid character.

The SYSNAME built-in function expects an input string of the form
<xxx>/yyy
The SYSNAME function takes a single string of the form <xxx>/yyy as it appears
in the .rtw file and returns a vector of two strings xxx and yyy. If the input
argument does not match this format, it returns this error.

The threshold on a %roll statement must be a single number
When using %roll, the roll threshold specified must be a single number. See
%roll for a complete discussion of the %roll construct.

The use of feature is being deprecated and will not be supported in future
versions of TLC. See the TLC manual for alternatives.
The %define and %generate directives are not recommended, as they are being
replaced.

The WILL_ROLL built in function expects a range vector and an integer
threshold
The WILL_ROLL function expects two arguments: a range vector and a
threshold.

There are no more free contexts. Use tlc('close', HANDLE) to free up a
context
The global context table has filled up while using the TLC server mode.

There was no type associated with the given block for GENERATE
The scope specified to GENERATE must include a Type parameter that indicates
which template file should be used to generate code for the specified scope. For
example,

%assign scope = block { Name "foo" }
%<GENERATE(scope, "Output")>
A-23

A TLC Error Handling

A-2
This example produces the error message because the scope does not include
the parameter Type. See the GENERATE and GENERATE_TYPE functions for more
information and examples on using the GENERATE built-in function.

This assignment would overwrite an identifier-value pair from the RTW
file. To avoid this error either qualify the left-hand side, or choose another
identifier.
The user is trying to modify a field of a record in a %with block without
qualifying the left-hand side, as in this example:

 %createrecord foo { field 1 }
 %with foo
 %assign field = 2 %% error
 %endwith

The correct method is:

%createrecord foo { field 1 }
 %with foo
 %assign foo.field = 2
 %endwith

TLC has leaked number symbols. You may have created a cyclic record. If
this not the case then please report this leak to The MathWorks.
There has been a memory leak while running TLC. The most common cause of
this is having cyclic records.

Unable to find identifier within the scope-identifier scope
The given identifier was not found in the scope specified. For example:

%assign scope = ascope { x 5 }
%assign y = scope.y

In this code, the reference to scope.y produces this error message.

Unable to open %include file filename
The file included in a %include directive was not found on the path. Either
locate the file and use the -I command line option to specify the correct
directory, or move the file to a location on the current path.
4

TLC Error Messages
Unable to open block template file filename from GENERATE or
GENERATE_TYPE
When using GENERATE, the given filename was not found on the Target
Language Compiler path. You can

• Add the file into a directory on the path.

• Use the %generatefile directive to specify an alternative filename for this
block type that is on the path.

• Add the directory in which this file appears to the command line options
using the -I switch.

Unable to open output file filename
Unable to open the specified output file; either an invalid filename was
specified or the file was read only.

Undefined identifier identifier_name
The identifier specified in this expression was undefined.

Unknown type "type" in CAST expression
When calling the CAST built-in function, the type must be one of the valid
Target Language Compiler types found in the Target Language Values table.

Unrecognized command line switch passed to string: switch
When querying the current state of a switch, the switch specified was not
recognized.

Unrecognized directive "directive-name" seen
An illegal % directive was encountered. The valid directives are shown below.

%addincludepath %filescope

%addtorecord %for

%assert %foreach

%assign %function

%break %generate
A-25

A TLC Error Handling

A-2
Unrecognized type "output-type" for function
The function type modifier was not Output or void. For functions that do not
produce output, the default without a type modifier indicates that the function
should produce no output.

%case %generatefile

%closefile %if

%continue %implements

%copyrecord %include

%createrecord %language

%default %matlab

%define %mergerecord

%else %openfile

%elseif %realformat

%endbody %return

%endfor %roll

%endforeach %selectfile

%endfunction %setcommandswitch

%endif %switch

%endroll %trace

%endswitch %undef

%endwith %warning

%error %with

%exit
6

TLC Error Messages
Unterminated multiline comment.
A multiline (i.e. /% %/) comment has no terminator, as in the following code:

/% my comment

%assign x = 2
%assign y = x * 7

Unterminated string
A string must be closed prior to the end of an expansion directive or the end of
a line.

Usage: tlc [options] file

Message Description

-r <name> Specify the Real-Time Workshop file to read.

-v[<number>] Specify the verbose level to be <number> (1
by default).

-I<path> Specify a path to local include files. The TLC
will search this path in the order specified.

-m[<number>|a] Specify the maximum number of errors (a is
all). Default is 5.

-O<path> Specify the path used to create output files.
By default all TLC output will be created in
this directory.
A-27

A TLC Error Handling

A-2
A command line problem has occurred. The error message contains a list of all
of the available options.

Use of feature incurs a performance hit, please see TLC manual for
possible workarounds.
The %undef and expansion (i.e. %<expr>) features may cause performance hits.

Value of specified_type type cannot be compared
The specified type (i.e., scope) cannot be compared.

-d[a|c|n|o] Invoke the TLC debug mode.

-da will make TLC execute any %assert
directives.

 -dc will invoke TLC command line
debugger.

 -dn will cause TLC to produce log files
indicating which lines were and were not hit
during compilation.

-do will disable TLC debugging behavior.

-a<ident>=<expression> Assign a variable to a specified value. Use
this option to specify parameters that can be
used to change the behavior of your TLC
program. This option is used by Real-Time
Workshop to set options like inlining of
parameters, file size limits, etc.

-p<number> Print a '.' indicating progress for every
<number> of TLC primitive operations
executed.

-lint Perform some simple performance checks
and collect some runtime statistics.

-x0 Parse a TLC file, but not execute it.

Message Description
8

TLC Error Messages
Values of specified_type type cannot be expanded
The specified type cannot be used on an expansion directive. Files and scopes
cannot be expanded. This can also happen when expanding a function without
any arguments. If you use

%<Function>

call it with the appropriate arguments.

Values of type Special, Macro Expansion, Function, File, Full Identifier,
and Index cannot be converted to MATLAB variables
The specified type cannot be converted to MATLAB variables.

When appending to a buffer stream, the variable must be a string
You can specify the append option for a buffer stream only if the variable
currently exists as a string. Do not use the append option if the variable does
not exist or is not a string. This example produces this error.

%assign x = 1
%openfile x , "a"
%closefile x
A-29

A TLC Error Handling

A-3
TLC Function Library Error Messages
There are many error messages generated by the TLC function library that are
not documented. These messages are sufficiently self-descriptive so that they
do not need additional explanation. However, if you come across an error
message that you feel needs more description, contact our technical support
staff and we will update it in a future release (and give more explanation).
0

B

Using TLC with Emacs

The Emacs Editor (p. B-2) Use the Emacs editor to edit your TLC files

B Using TLC with Emacs

B-2
The Emacs Editor
If you’re editing TLC files, we recommend trying to use Emacs. You can get a
copy of Emacs from http://www.gnu.org.

The MathWorks has created a tlc-mode for Emacs that gives automatic
indenting and color-coded syntax highlighting of TLC files. You can obtain
tlc-mode (and matlab-mode) from our Web site.

ftp://ftp.mathworks.com/pub/contrib/emacs_add_ons

See the readme.txt file for instructions on how to configure tlc-mode.

Color-coding syntax in Emacs makes TLC code is much more readable.

Getting Started
To get started using Emacs:

Ctrl stands for control key. For example, to load a file into Emacs, hold down
the control key and type x, followed by f with the control key still pressed, then
release the control key and type the name of a file followed by return. A tutorial
is available from the Emacs Help menu.

Creating a TAGS File
If you are familiar with Emacs TAGS, you can create a TAGS file for TLC files
by invoking

etags --regex='/[\t]*\%function[\t]+.+/' --language=none *.tlc

in the UNIX directory where your .tlc files are located. The etags command
is located the emacs_root/bin directory. Users of Windows NT must type

etags "--regex=/[\t]*\%function[\t]+.+/" --language=none *.tlc

in a DOS command window.

Ctrl+x Ctrl+f file.tlc <return> Loads a file into an Emacs buffer for
editing.

Ctrl+x Ctrl+s Saves the file in the current buffer.

Ctrl+x Ctrl+c Exits Emacs.

Index
Symbols
! 5-23
- 5-23
– 5-24
!= 5-25
% 5-2, 5-21, 5-23
& 5-25
&& 5-25
() 5-23
* 5-23
+ 5-23, 5-24
, 5-26
. 5-23
... 5-18
.c file 1-5
.h file 1-5
.log 6-9
.rtw file 1-5
/ 5-23
:: 5-22, 5-52
< 5-25
<< 5-24
<= 5-25
== 5-25
> 5-24
>= 5-25
>> 5-24
? : 5-26
\ 5-18
^ 5-25
_prm.h file 1-5
_reg.h file 1-5
| 5-25
|| 5-25
~ 5-23
A
%addincludepath 5-37
array index 5-22
%assert 5-38
assert

adding A-2
%assign 5-51, 7-24

defining parameters 3-19

B
block

customizing Simulink 5-34
block function 7-29

InitializeConditions 7-34
Start 7-34

block target file 1-4, 7-29
function in 7-25
mapping 3-25
writing 7-30

BlockInstanceSetup 7-30
block-scoped variable 5-58
BlockTypeSetup 7-31
%body 5-30
Boolean 5-19
%break 5-29, 5-30
%continue 5-29
buffer

close 5-37
writing 5-36

built-in functions 5-39
CAST 5-40
EXISTS 5-40
FEVAL 5-40
FIELDNAMES 5-41
FILE_EXISTS 5-40
Index-1

Index

Ind
FORMAT 5-41
GENERATE 5-41
GENERATE_FILENAME 5-41
GENERATE_FORMATTED_VALUE 5-41
GENERATE_FUNCTION_EXISTS 5-42
GENERATE_TYPE 5-42
GENERATE_TYPE_FUNCTION_EXISTS 5-42
GET_COMMAND_SWITCH 5-42
GETFIELD 5-41
IDNUM 5-42
IMAG 5-42
INT16MAX 5-42
INT16MIN 5-42
INT32MAX 5-42
INT32MIN 5-43
INT8MAX 5-42
INT8MIN 5-42
INTMAX 5-43
INTMIN 5-43
ISALIAS 5-43
ISEMPTY 5-43
ISEQUAL 5-43
ISFIELD 5-43
ISFINITE 5-43
ISINF 5-43
ISNAN 5-43
NULL_FILE 5-44
NUMTLCFILES 5-44
OUTPUT_LINES 5-44
REAL 5-44
REMOVEFIELD 5-44
ROLL_ITERATIONS 5-44
SETFIELD 5-44
SIZE 5-45
SPRINTF 5-45
STDOUT 5-45
STRING 5-45
ex-2
STRINGOF 5-45
SYSNAME 5-46
TLC_FALSE 5-46
TLC_TIME 5-46
TLC_TRUE 5-46
TLC_VERSION 5-46
TLCFILES 5-46
TYPE 5-46
UINT16MAX 5-47
UINT32MAX 5-47
UINT8MAX 5-47
UINTMAX 5-47
WHITE_SPACE 5-47
WILL_ROLL 5-47

C
C MEX S-function 1-4
%case 5-29
CAST 5-40
%closefile 5-36
code

intermediate 3-18
code coverage 6-9
code generation 1-9
coding conventions 7-24
comment

target language 5-17
CompiledModel 4-3
Compiler

Target Language (TLC) 1-2
Complex 5-19
Complex32 5-19
conditional

inclusion 5-28
operator 5-21

constant

Index
integer 5-21
string 5-21

continuation
line 5-18

%continue 5-30
customizing

code generation 3-18
Simulink block 5-34

D
debug

message 5-38
debugger 6-2, 6-5
debugger commands

viewing 6-5
debugging tips 6-2
%default 5-29
Derivatives 7-36
directive 3-19, 5-2

object-oriented 5-34
splitting 5-18

directives
%% 5-2
%<expr> 5-3
%addincludepath 5-10
%addtorecord 5-8
%assert 5-5
%assign 5-6
%break 5-4
%case 5-4
%closefile 5-16
%copyrecord 5-8
%createrecord 5-7
%default 5-4
%else 5-4
%elseif 5-4

%endforeach 5-15
%endfunction 5-13
%endif 5-4
%endroll 5-11
%endswitch 5-4
%endwith 5-5
%error 5-6
%exit 5-6
%filescope 5-10
%for 5-16
%foreach 5-15
%function 5-13
%generatefile 5-9
%if 5-4
%implements 5-9
%include 5-10
%language 5-9
%matlab 5-2
%mergerecord 5-8
%openfile 5-16
%realformat 5-8
%return 5-13
%roll 5-11
%selectfile 5-16
%setcommandswitch 5-5
%switch 5-4
%trace 5-6
%warning 5-6
%with 5-5
/% text %/ 5-2

Disable 7-32
dynamic scoping 5-56

E
%else 5-28
%elseif 5-28
Index-3

Index

Ind
Enable 7-32
%endbody 5-30
%endfor 5-30
%endforeach 5-29
%endfunction 5-66
%endif 5-28
%endswitch 5-29
%endwith 5-58
%error 5-38
error

formatting messages A-4
internal A-2
usage A-2

error message 5-38
Target Language Compiler A-5

EXISTS 5-40
%exit 5-39
expressions 5-21

operators in 5-21
precedence 5-21

F
FEVAL 5-40
FIELDNAMES 5-41
File 5-19
file

.c 1-5

.h 1-5

.rtw 1-5
_prm.h 1-5
_reg.h 1-5
appending 5-37
block target 1-4, 3-22
close 5-37
inline 5-37
model description. See model.rtw
ex-4
model-wide target 3-19
system target 3-23
target 1-4, 3-18
target language 3-25
used to customize code 3-18
writing 5-36

FILE_EXISTS 5-40
%for 5-30
%foreach 5-29
FORMAT 5-41
formatting 5-27
Function 5-19
%function 5-66
function

C MEX S-function 1-4
call 5-22
GENERATE 5-35
GENERATE_TYPE 5-35
library 7-27
output 5-67
target language 5-66
Target Language Compiler 5-39–5-47

functions
obsolete 8-2

G
Gaussian 5-19
Gaussian, Unsigned 5-20
GENERATE 5-35, 5-41
GENERATE_FILENAME 5-41
GENERATE_FORMATTED_VALUE 5-41
GENERATE_FUNCTION_EXISTS 5-42
GENERATE_TYPE 5-35, 5-42
GENERATE_TYPE_FUNCTION_EXISTS 5-42
%generatefile 5-34
GET_COMMAND_SWITCH 5-42

Index
GETFIELD 5-41

I
identifier 7-24

changing 5-51
defining 5-51

IDNUM 5-42
%if %endif 5-28
IMAG 5-42
%implements 5-34
%include 5-37
inclusion

conditional 5-28
multiple 5-29

index 5-22
Initialize 7-34
InitializeConditions 7-34
inlining S-function 7-5

advantages 1-13
input file control 5-37
INT16MAX 5-42
INT16MIN 5-42
INT32MAX 5-42
INT32MIN 5-43
INT8MAX 5-42
INT8MIN 5-42
integer constant 5-21
intermediate code 3-18
INTMAX 5-43
INTMIN 5-43
ISALIAS 5-43
ISEMPTY 5-43
ISEQUAL 5-43
ISFIELD 5-43
ISFINITE 5-43
ISINF 5-43

ISNAN 5-43

L
%language 5-34
lcv, definition 8-4
library functions

LibBlockContinuousState 8-31
LibBlockDiscreteState 8-33
LibBlockDWork 8-31
LibBlockDWorkAddr 8-32
LibBlockDWorkDataTypeId 8-32
LibBlockDWorkDataTypeName 8-32
LibBlockDWorkIsComplex 8-32
LibBlockDWorkName 8-32
LibBlockDWorkStorageClass 8-32
LibBlockDWorkUsedAsDiscreteState 8-33
LibBlockDWorkWidth 8-33
LibBlockInputSignal 8-9
LibBlockInputSignalAddr 8-16
LibBlockInputSignalBufferDstPort 8-78
LibBlockInputSignalConnected 8-17
LibBlockInputSignalDataTypeId 8-17
LibBlockInputSignalDataTypeName 8-17
LibBlockInputSignalDimensions 8-18
LibBlockInputSignalIsComplex 8-18
LibBlockInputSignalIsFrameData 8-18
LibBlockInputSignalLocalSampleTimeIndex

8-18
LibBlockInputSignalNumDimensions 8-18
LibBlockInputSignalOffsetTime 8-18
LibBlockInputSignalSampleTime 8-19
LibBlockInputSignalSampleTimeIndex 8-19
LibBlockInputSignalStorageClass 8-79
LibBlockInputSignalStorageTypeQualifier

8-79
LibBlockInputSignalWidth 8-19
Index-5

Index

Ind
LibBlockIWork 8-33
LibBlockMatrixParameter 8-26
LibBlockMatrixParameterAddr 8-26
LibBlockMode 8-33
LibBlockNonSampledZC 8-33
LibBlockOutputSignal 8-21
LibBlockOutputSignalAddr 8-21
LibBlockOutputSignalBeingmerged 8-22
LibBlockOutputSignalConnected 8-22
LibBlockOutputSignalDataTypeId 8-23
LibBlockOutputSignalDataTypeName 8-23
LibBlockOutputSignalDimensions 8-23
LibBlockOutputSignalIsComplex 8-23
LibBlockOutputSignalIsFrameData 8-23
LibBlockOutputSignalIsGlobal 8-79
LibBlockOutputSignalIsInBlockIO 8-80
LibBlockOutputSignalIsValidLValue 8-80
LibBlockOutputSignalLocalSampleTimeInde

x 8-24
LibBlockOutputSignalNumDimensions 8-24
LibBlockOutputSignalOffsetTime 8-24
LibBlockOutputSignalSampleTime 8-24
LibBlockOutputSignalSampleTimeIndex

8-24
LibBlockOutputSignalStorageClass 8-80
LibBlockOutputSignalStorageTypeQualifie

r 8-80
LibBlockOutputSignalWidth 8-24
LibBlockParameter 8-27
LibBlockParameterAddr 8-28
LibBlockParameterBaseAddr 8-29
LibBlockParameterDataTypeId 8-29
LibBlockParameterDataTypeName 8-29
LibBlockParameterDimensions 8-29
LibBlockParameterIsComplex 8-30
LibBlockParameterSize 8-30
LibBlockPWork 8-34
ex-6
LibBlockReportError 8-35
LibBlockReportFatalError 8-35
LibBlockReportWarning 8-35
LibBlockRWork 8-34
LibBlockSampleTime 8-59
LibBlockSrcSignalBlock 8-80
LibBlockSrcSignalIsDiscrete 8-81
LibBlockSrcSignalIsGlobalAndModifiable

8-81
LibBlockSrcSignalIsInvariant 8-82
LibCacheDefine 8-38
LibCacheExtern 8-38
LibCacheFunctionPrototype 8-39
LibCacheIncludes 8-39
LibCacheTypedefs 8-39
LibCallFCSS 8-67
LibGetBlockPath 8-36
LibGetDataTypeAliasedToFromId 8-74
LibGetDataTypeComplexNameFromId 8-74
LibGetDataTypeEnumFromId 8-74
LibGetDataTypeNameFromId 8-74
LibGetDataTypeResolvesToFromId 8-74
LibGetFormattedBlockPath 8-36
LibGetGlobalTIDFromLocalSFcnTID 8-61
LibGetNumSFcnSampleTimes 8-62
LibGetSFcnTIDType 8-63
LibGetTaskTimeFromTID 8-63
LibIsComplex 8-75
LibIsContinuous 8-63
LibIsDiscrete 8-64
LibIsFirstInitCond 8-75
LibIsSFcnSampleHit 8-64
LibIsSFcnSingleRate 8-65
LibIsSFcnSpecialSampleHit 8-65
LibMaxIntValue 8-76
LibMinIntValue 8-76
LibSetVarNextHitTime 8-66

Index
M
macro

expansion 5-22
makefile

template 1-4
Matrix 5-19
mdlDerivatives (S-function) 7-5
mdlInitializeConditions 7-5
mdlInitializeSampleTimes 7-5
mdlInitializeSizes 7-5
mdlOutputs (S-function) 7-5
mdlRTW method

registering parameters with 7-6
MdlStart

InitializeConditions 7-34
MdlTerminate

Terminate 7-36
mdlTerminate (S-function) 7-5
mdlUpdate (S-function) 7-5
model description file. See model.rtw
model.rtw file 1-3, 5-39
model-wide target file 3-19
modifier

Output 5-67
void 5-67

multiple inclusion 5-29

N
negation operator 5-23
nested function

scope within 5-68
new features

version 4.0 1-18
version 4.1 1-17
version 5.0 1-16

NULL_FILE 5-44

Number 5-19
NUMTLCFILES 5-44

O
object-oriented directive 5-34
obsolete functions 8-2
%openfile 5-36
operations

precedence 5-23
operator 5-21

:: 7-25
conditional 5-21
negation 5-23

output file control 5-36
Output modifier 5-67
OUTPUT_LINES 5-44
Outputs 7-34

P
parameter

defining 3-19
value pair 4-2

parameter settings
in s-functions 7-6

paramIdx 8-6
path

specifying absolute 5-38
specifying relative 5-38

portIdx, definition 8-4
precedence

expressions 5-21
operations 5-23

profiler 6-13
using 6-13

program 3-25
Index-7

Index

Ind
R
Range 5-20
REAL 5-44
Real 5-20
Real32 5-20
%realformat 5-27
Real-Time Workshop 1-2
record 3-14, 4-2
REMOVEFIELD 5-44
resolving variables 5-56
%return 5-66, 5-70
%roll

common arguments to 8-4
directive 5-11
syntax of 5-31

ROLL_ITERATIONS 5-44
rt 7-26
rt_ 7-26
RTW

identifier 7-24

S
Scope 5-20
scope 5-56

accessing values in 4-3
closing 5-70
dynamic 5-56
function 5-22
within function 5-68

search path 5-73
adding to 5-38
overriding 5-73
sequence 5-38
specifying absolute 5-38
specifying relative 5-38

%selectfile 5-36
ex-8
SETFIELD 5-44
S-function

adavantage of inlining 1-13
C MEX 1-4
inlining 7-5
user-defined 7-36

sigIdx 8-5
Simulink

and Real-Time Workshop 1-2
generating code 1-5

Simulink data objects
and ObjectProperties records 4-6

SIZE 5-45
Special 5-20
SPRINTF 5-45
Start 7-33
stateIdx 8-6
STDOUT 5-45
STRING 5-45
String 5-20
string constant 5-21
string variables

white space in 3-11
STRINGOF 5-45
substitution

textual 5-21
Subsystem 5-20
%switch 5-29
syntax 5-2
SYS_NAME 5-46
system target file 3-23

T
target file 1-4, 3-18, 3-22

and customizing code 3-18
block 3-25, 7-29

Index
model-wide 3-19
naming 5-73
system 3-23

target language 3-13
comment 5-17
directive 3-19, 5-2
expression 5-21–5-26
file 5-2
formatting 5-27
function 5-66
line continuation 5-18
program 3-25
syntax 5-2
value 5-19–5-20

Target Language Compiler
-a parameter 3-10
command line arguments 5-71
configuring 3-10
directives 5-2–5-17
error messages A-5
function library 7-27
introducing 1-2
switches 5-71
uses of 1-7
variables 7-26

template makefile 1-4
Terminate 7-36
textual substitution 5-21
TLC code

debugging tips 6-2
TLC coverage option 6-9
TLC debugger 6-2
TLC debugger commands 6-5
TLC profiler 6-13
TLC program 3-25
TLC_FALSE 5-46
TLC_TIME 5-46

TLC_TRUE 5-46
TLC_VERSION 5-46
TLCFILES 5-46
%trace 5-39
tracing 5-39
tunable parameters

in s-functions 7-6
TYPE 5-46

U
ucv, definition 8-4
UINT16MAX 5-47
UINT32MAX 5-47
UINT8MAX 5-47
UINTMAX 5-47
Unsigned 5-20
Unsigned Gaussian 5-20
Update 7-36

V
values 5-19
variables

block-scoped 5-58
global 7-25
local 7-25

Vector 5-20
void modifier 5-67

W
%warning 5-39
warning message 5-38
WHITE_SPACE 5-47
WILL_ROLL 5-47
%with 5-58
Index-9

Index

Ind
Z
zero-crossing

reset code 7-36
ex-10

	Introducing the Target Language Compiler
	What Is the Target Language Compiler?
	Overview of the TLC Process
	Overview of the Code Generation Process

	Target Language Compiler Capabilities
	Customizing Output
	Inlining S-Functions
	Modifying and Diversifying Code Generation

	Code Generation Process
	How TLC Determines S-Function Inlining Status
	A Look at Inlined and Noninlined S-Function Code

	Advantages of Inlining S-Functions
	Motivations
	Inlining Process
	Search Algorithm for Locating Target Files
	Availability for Inlining and Noninlining

	New Features and Compatibility Issues in Versions 4.0, 4.1, and 5.0
	New Features Added in Version 5.0
	New Features Added in Version 4.1
	New Features Added in Version 4.0
	Compatibility Issues

	Where to Go from Here
	Related Manuals

	Getting Started
	Code Architecture
	model.rtw and Target Language Compiler Overview
	The Target Language Compiler Process

	Inlining S-Function Concepts
	Noninlined S-Function
	Types of Inlining
	Fully Inlined S-Function Example
	Wrapper Inlined S-Function Example

	Code Generation Architecture
	Build Process
	A Basic Example

	Invoking Code Generation
	The rtwgen Command
	The tlc Command

	Configuring TLC
	Setting Command Line Arguments
	Configuring for TLC Debugging

	Code Generation Concepts
	Output Streams
	Variable Types
	Records
	Record Aliases

	TLC Files
	Available Target Files
	Summary of Target File Usage
	System Target Files
	Block Target Files
	Block Target File Mapping

	Data Handling with TLC: An Example
	Matrix Parameters in Real-Time Workshop

	Contents of model.rtw
	Model.rtw File Overview
	Using Scopes in the model.rtw File
	Object Information in the model.rtw File

	Using Library Functions to Access model.rtw Contents
	Caution Against Directly Accessing Record Fields
	Exception to Using the Library Functions

	Directives and Built-in Functions
	Compiler Directives
	Syntax
	Comments
	Line Continuation
	Target Language Values
	Target Language Expressions
	Formatting
	Conditional Inclusion
	Multiple Inclusion
	Object-Oriented Facility for Generating Target Code
	Output File Control
	Input File Control
	Asserts, Errors, Warnings, and Debug Messages
	Built-In Functions and Values
	TLC Reserved Constants
	Identifier Definition
	Variable Scoping
	Target Language Functions

	Command Line Arguments
	Filenames and Search Paths

	Debugging TLC Files
	About the TLC Debugger
	Tips for Debugging TLC Code

	Using the TLC Debugger
	Invoking the Debugger
	TLC Debugger Command Summary

	TLC Coverage
	Using the TLC Coverage Option

	TLC Profiler
	Using the Profiler

	Inlining S-Functions
	Introduction
	Writing Block Target Files to Inline S-Functions
	Fully Inlined S-Functions
	Function-Based or Wrappered Code Generation

	Inlining C MEX S-Functions
	S-Function Parameters
	A Complete Example

	Inlining M-File S-Functions
	Inlining Fortran (F-MEX) S-Functions
	TLC Coding Conventions
	Block Target File Methods
	Block Target File Mapping
	Block Functions

	Loop Rolling
	Error Reporting

	TLC Function Library Reference
	Obsolete Functions
	Target Language Compiler Functions
	Common Function Arguments

	Input Signal Functions
	Output Signal Functions
	Parameter Functions
	Block State and Work Vector Functions
	Block Path and Error Reporting Functions
	Code Configuration Functions
	Sample Time Functions
	Other Useful Functions
	Advanced Functions

	TLC Error Handling
	Generating Errors from TLC-Files
	Usage Errors
	Fatal (Internal) TLC Coding Errors
	Formatting Error Messages

	TLC Error Messages
	TLC Function Library Error Messages

	Using TLC with Emacs
	The Emacs Editor
	Getting Started
	Creating a TAGS File

	Index

